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ABSTRACT 

As the laser spot size in micro-scale laser shock peening 
is in the order of magnitude of several microns, the anisotropic 
response of grains will have a dominant influence on its 
mechanical behavior of the target material. Furthermore, 
conventional plasticity theory employed in previous studies 
needs to be reexamined due to the length scale effect. In the 
present work, the length scale effects in microscale laser shock 
peening have been investigated. The crystal lattice rotation 
underneath the shocked surface was determined via Electron 
Backscatter Diffraction (EBSD). From these measurements, the 
geometrically necessary dislocations (GND) density that the 
material contains has been estimated. The yield strength 
increment was then calculated from the GND distribution by 
using Taylor model and integrated into each material point of 
the FEM simulation. Finite element simulations, based on 
single crystal plasticity, were performed of the process for both 
with and without considering the GND hardening and the 
comparison has been conducted.  

 
INTRODUCTION 

Micro-scale laser shock peening (µLSP), which aims to 
improve fatigue performance by imparting a compressive 
residual stress into the target material surface layer using laser 
induced shock waves, has been the focus of several recent 
investigations [1, 2]. This process is desirable for metallic 
components of micro-devices which encounter cyclic loading, 
such as micro-switches, micro-blades of a micro turbine, etc. 
Previous work has shown [1, 2] through both numerical 

analysis and experiments that through µLSP, one can 
manipulate the compressive residual stress distribution in a 
region close to the shocked surface with micron spatial 
resolution.  

Recent experiments in both bending and indentation have 
shown that the apparent material hardening increases as the size 
of specimen decreases to micron level [3, 4] where classical 
plasticity theory has been unable to account for the observed 
phenomena. It is well known now [5, 6, 7] that this hardening is 
due to length scale effects. Therefore, when the laser beam spot 
size is reduced to several microns, i.e. the same order of grain 
size, the size scale will have significant influence on 
mechanical behavior and the conventional plasticity theory 
must be reexamined as well.  However, the numerical models 
developed before [1, 2] to predict the material response to the 

µLSP process are simplified and approximated without 
considering length scale effects and all based on the 
conventional plasticity theory. In order to better understand 

µLSP process and more accurately simulate the process, it is 
necessary to understand the length scale effect on the process 
and integrate this into the simulation model. 

In micro-scale deformation, strain gradient effects may be 
large enough such that the yield strength of a material depends 
not only on the strain, but also on the strain gradient. The 
motivation behind the use of strain gradients is based on the 
framework of geometrically necessary dislocations (GNDs), 
which were first introduced by Nye [8] and furthered by Ashby 
[9], who have given a physical basis for strain gradient 
dependent material behavior.  Strain gradient theories have 
been physically motivated by developments in dislocation 
mechanics. More details about geometrically necessary 
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dislocations in single crystals and polycrystalline materials can 
be found in Arsenlis and Parks [6]. In particular, several strain 
gradient models have been developed to numerically capture 
length scale effects where the underlying physics is sometimes 
related to the geometrically necessary dislocation [5, 10].  

There have been a number of investigations on 
geometrically necessary dislocation density under constant 
loading or punch configurations for anisotropic materials [11, 
12]. For example, Kysar et al. [12] estimated the distribution of 
geometrically necessary dislocation density on a cross section 
of a wedge indented aluminum single crystal via EBSD 

measurement. As lattice curvature induced by µLSP is 
relatively small compared with those of a constant load or a 

punch, length scale effects are not obvious in µLSP and can not 
simply be copied from their works. The objective of the present 
work is to find the spatial distribution of the geometrically 
necessary dislocation density after µLSP process from both 
numerical and experimental results for single crystal aluminum 
under plane strain condition. Gaussian pressure loading, 
corresponding to the pressure caused by laser shock peening, 
was assumed in the numerical simulation and the resulting 
plastic deformation was analyzed to find the distribution of the 
geometrically necessary dislocation density. 

The remainder of the chapter is organized as follows. 
Section 2 gives details about experimental conditions and post-
peening material characterization, which includes lattice 
rotation quantification by EBSD. Principles of the evaluation of 
geometrically necessary dislocations density are described in 
Section 3. In Section 4, finite element simulation employed to 

study the length scale effect in the target material after µLSP is 
presented. Section 5 gives the results and discussion. Following 
are concluding marks. 

 

 

Fig. 1 Experimental set-up 
 

EXPERIMENTAL CONDITIONS AND POST-PEENING 
MATERIAL CHARACTERIZATION 
 A frequency tripled Q-switched Nd:YAG laser 

( nm355=λ ) in TEM00 mode was used for the µLSP 

experiments with a 50ns pulse duration and a 12µm beam 
diameter, as shown in Fig. 1. A thin layer of high vacuum 
grease (about 10 microns thick) was spread evenly on the 

sample surface, and a 16µm thick polycrystalline aluminum 
foil, chosen for its relatively low threshold of vaporization, was 
tightly pressed onto the grease.  The sample was placed in a 
 

shallow container filled with distilled water approximately 3 
mm above the sample’s top surface. A line of µLSP shocks 

were created on the sample surface with a 25 µm spacing along 

the [110] direction as shown in Fig. 1. A pulse energy of 228µJ 
was used which corresponded to a laser intensity of 
4.03GW/cm

2
. After shock processing, the coating layer and the 

vacuum grease were manually removed.   
A single crystal aluminum with the orientation ( )411  is 

chosen because when shocks applied along [ ]110  direction 

approximate plane strain condition is achieved  [13] and under 
the Gaussian pressure loading only one slip system is activated. 
Furthermore, aluminum is a popular material used in micro 
metallic devices so it is of interest to study its mechanical 
behavior under µLSP. In preparation for laser shock peening, 
the sample surface was polished mechanically by using grit 600 
sand paper and then repeated by using grit 1200 sand paper. 
After sandpaper polish, the specimen was polished using 

diamond paste with lapping oil as a lubricant, first 6 µm paste 

and then 1µm with minimum pressure was used until no 
directionally preferential scratches were visible under optical 
microscope with 100x magnification. In order to remove any 
residual stress induced during the mechanical polish process, 
the sample was electro-polished before shocking. 
 

 
Fig. 2  Deformed geometry of shocked line by using SPM with 

scan area=80×80µm and data scale=1µm 
 

The shocked region was measured using scanning probe 
microscopy (SPM, Digital Instruments Nanoscope Inc.) as 

shown in Fig. 2 for a scanning area of 80µm×80µm.  After the 
shock peening, EBSD data was collected using a system 
supplied by HKL Technology and attached to a JEOL JSM 
5600LV scanning electron microscope (SEM). All data were 
acquired in the automatic mode, using external beam scanning 

and employing a 3µm step size as the preliminary investigation 
revealed negligible levels of orientation difference at finer 
scales of inquiry. The scan area chosen was 

150µm(width)×100µm(depth) on the cross section as the 

effected area by µLSP is usually smaller than this area. The 
EBSD results from each individual scan comprise data 
containing the position coordinates and the three Euler angles 
which describe the orientation of the particular interaction 
volume relative to the orientation of the specimen in the SEM 
allowing in-plane and out-of-plane lattice rotations to be 
calculated relative to the known undeformed crystallographic 
orientation, which serves as a reference state. 
2 Copyright © 2008 by ASME 
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EVALUATION OF GEOMETRICALLY NECESSARY 
DISLOCATION DENSITY AND ITS HARDENING 
EFFECT 

Based on the work by Kysar et al. [12], the evaluation 
principles of the geometrically necessary dislocation density are 
briefly summarized here as follows. First, the lattice curvature, 
global coordinate x, y, z and local coordinate systems x’, y’ and 
z’ are defined as shown in Fig. 3. By naming the lattice rotation 
about the x, y and z coordinates as ω1, ω2 and ω3, respectively, 
the crystal lattice curvature tensor, κij can be described as [8]: 

















=

333231

232221

131211

κκκ

κκκ

κκκ

κ                                            (1) 

where 
j

i
ij

x∂

∂
=

ω
κ . Under plane strain condition, ω1 = 0, ω2 = 0.  

ω3 can be found through EBSD measurement. According to 

Nye’s dislocation tensor [8], ijα , which is a representation of 

dislocation with Burgers vector i and line vector j, ijα can be 

described as [12]: 

( ) ( ) ( )n
i

n
i

m

n

n
ij tb∑

=

=
1

ρα                                                (2) 

where n is an integer, m the total number of active slip systems, 
( )n

jt  is the tangent line vector of dislocation which also is a unit 

vector but its direction is perpendicular to the ( )110  plane, 
( )n
ib  

is the effective length of Burgers vector of the slip system n, 
( )nρ  is the density of geometrically necessary dislocations on 

slip system n. 

 

Fig. 3 The crystal lattice curvature and coordinate system 
 

Assuming the elastic strain gradient is negligible 
compared to the lattice rotation gradient, Nye’s tensor is related 
to the lattice curvature tensor as [6]: 

kkjijiij αδακ
2

1
+−=                                               (3) 

where jiδ  is the Kronecker delta. Considering the plane strain 

condition, Nye’s dislocation density tensor in local coordinate 
can be described as 
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Following the work of Kysar et al. [12], 

( ) ( ) ( ) ( )n
j

n
i

n

n

n
ij tsb∑

=

=
3

1

' ρα                                            (5) 

for the plane strain condition with three effective slip systems, 

where 
( )n
is  is a unit vector in the slip direction which is parallel 

to the Burgers vector, and n takes value of 1, 2, or 3, depending 
on the active slip system.  

The above is a brief summary of the GND evaluation 
principles employed in this paper. It should be pointed out that 
there are differences between Kysar et al. [12] and the 
presented work. Kysar et al. [12] employed the above 
evaluation to characterize the GND induced by wedge 
indentation on a single crystal aluminum with low index 
orientation [001], which corresponds to symmetrical 
deformation with respect to the yield surface. Also, Kysar et al. 
[12] yielded only an estimate of GND density, not the actual 
density. In this paper, single crystal aluminum with orientation 

[ ]411  corresponding to asymmetrical deformation is used since 

it only has a single slip system activated in the main regions of 
plastic deformation under plane strain conditions. Therefore, 
the induced GND will be smaller than that of [001] or other 
symmetrical orientations under the same conditions as there are 
two active slip systems for these orientations. Thus, if the 

hardening caused by GND for the orientation [ ]411  can not be 

neglected, it follows that it cannot be ignored for symmetrical 
orientations either.  

 

 

Fig. 4 The three effective slip systems in the aluminum single 

crystal of [ ]411  orientation 

 

Based on Eq. (5), the geometric parameters 
( )n

is  and 
( )n

jt  

are different from the [001] and must be determined first. From 
Fig. 4, the parameters can be found according to the 
geometrical relationship listed in Table 1. 
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Table 1: Geometrically necessary dislocation parameters of 

FCC crystals for Al [ ]411  sample 

Slip 
system 

Slip 
angle 

Unit vector of slip: s Dislocation 
line vector: t 

(1) -35.3° 














−− 0,

3

1
,

3

2
 

(0, 0, -1) 

(2) -19.4° 








− 0,

3

1
,2

3

2
 

(0, 0, -1) 

(3) -74.1° 














− 0,

3

1

3

5
,

3

2

3

1
 

(0, 0, -1) 

 
 

By applying the unit vectors and dislocation line vectors, 
Eq.(5) can be written as  

( ) ( ) ( ) ( ) ( ) ( )

3

1

3

1 332211'
13 bbb ρρρα −+=                 (6a)   

( ) ( ) ( ) ( )

3

2

3

2 3311'
23 bb ρρα +=                              (6b) 

For the two equations with three unknowns, a solution may 
be found by optimizing the variables in a certain sense, such as 
the least norm solution by minimizing 

( )[ ] ( )[ ] ( )[ ]
2/1

232221







 ++ ρρρ  through singular value 

decomposition [6]. By summing the density of each slip 
system, the total GND density can be found.  The approximate 
strength of the single crystal in the shocked region can be 
calculated using the Taylor hardening model in which the yield 

strength of a material, yσ  is proportional to the square root of 

the geometrically necessary dislocation density ρ . By 

assuming that all slip systems harden at the same rate, the 
enhanced strength is related to the square root of GND [9]:  

             ρµτ bc=                                                            (7)  

where c is a constant related to the crystal and grain structure, 

usually ranging from 0.1 to 0.5 [9], τ  is the enhanced flow 

stress by GND in each slip system, µ is shear modulus, b is the 

Burger’s vector and ρ  is the total GND density.  

 
FINITE ELEMENT SIMULATION OF SPATIALLY 
RESOLVED GND DEPENDENT DEFORMATION 

In order to estimate length scale effects on micro-scale 
laser shock peening, a simulation strategy depicted by the flow 
chart in Fig. 5 is followed. First, based on the evaluation 
principles discussed above, the geometrically necessary 
dislocation density is found according to Eqs. (6a) and (6b) 
from lattice rotation of the simulation without considering 
length scale effects and is validated by the experimental result 
of EBSD measurement. Then, the enhanced strength due to the 
geometrically necessary dislocations is calculated at each 
material point or node in finite element simulation by using Eq. 
(7). The current strength in each step is updated by combining 
the local enhanced strength with the global initial strength. The 
enhanced strength is applied in a linear manner; that is, it 
 

increases from zero to the final strength during the loading step 
and remains constant in the relaxation step as the plastic 
deformation is unrecoverable during the relaxing.  
 

In the simulation, the theory of single crystal plasticity 
[14] was integrated into finite element simulation by a user-
material subroutine (UMAT), written by Huang [15] and 
modified by Kysar [16]. It is incorporated into the finite 
element analysis using the general purpose finite element 
program ABAQUS/Standard.  In the UMAT,   the {111}<110>  
slip systems in FCC metal are employed and  an initial critical 

resolved shear strength MPaCRSS 1≈τ  is assumed for each of 

the slip systems, which is a reasonable value for high purity 
single crystals employed (e.g. [17]). The element used in the 
simulation was plane strain reduced integration, hybrid element 

(CPE4RH) for a total simulated area: 384µm×192µm 

(thickness×width). As for boundary conditions of the plane 
strain model, the applied surface tractions correspond to the 
applied pressure on the shocked surface. At the bottom surface, 
the vertical displacement is specified as zero and the outer 
edges are traction free. The pressure distribution on the surface 

follows a Gaussian as 










−=

2

2

0
2

exp)(
R

x
PxP , where x is the 

radial distance from the center of the laser beam and R is the 

radius of plasma, which is assumed to be equal to 6µm here. 

The peak value of pressure is assumed to be 7/0 =CRSSP τ .  

 
 

 

Fig. 5  The scheme FEM simulation of spatially 
resolved GND dependent deformation 
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RESULTS AND DISCUSSION 

Lattice rotation field 

From the measurement mentioned above, the resulting 
lattice rotation due to laser shock peening was obtained. In 
order to measure the lattice rotation below the sample surface 
and study the spatial distribution in the depth direction, the 
sample was sectioned on a (110) plane via wire EDM and the 
crystallographic orientation of the newly exposed surface was 
mapped using EBSD. The lattice rotation obtained in this 
manner is called “in-plane” because the experimental results 
indicate an approximate two-dimensional deformation state.  
Fig. 6 shows the lattice rotation in the cross section, which 
shows that the lattice rotation varies between ±2° in the region 

up to 60µm below the sample surface. In the center of the 
shock line, the lattice rotation is nearly zero (green) and 
rotation direction reversed across the shocked line, which is 
consistent with the result from sample surface. The maximum 
lattice rotation occurs near the sample surface and the value 
decays as depth increases. The lattice rotation from FEM 
simulation shown in Fig. 7 indicates two distinct misorientation 
regions on each side which is similar to the EBSD result. Also, 
there is a misorientation free region in the middle which can be 
seen from the experimental result as well.  It can be seen from 
lattice rotation field of EBSD measurement that the plastic 

deformation zone is about 100µm while FEM simulations 

predict a 50µm zone. This may be due to lateral expansion of 
plasma as this effect is a more significant concern for a small 
beam size [1].  Also, in the simulation quasi-static loading is 
assumed and the peak pressure is only 7MPa, but in microscale 
LSP, the peak pressure is usually above 2GPa [1]. 

 

 

Fig. 6 Crystal lattice rotation by EBSD measurement 
 

 

Geometrically necessary dislocation density (GND) and its 
hardening  

Geometrically necessary dislocation density Based on the 
evaluation principles of GND, its distribution can be found 
from both simulation and experiments for the shocked 
specimen. Fig. 8 shows the geometrically-necessary dislocation 
density from the EBSD measurements. It can be seen that the 

magnitude of GND is about 9×10
13

 m
-2

, which is coincident 
with large lattice rotation and the rotation free region at the 
 

shock line center. The distribution consists approximately of 
three regions, denoted as A, B and C, corresponding to the blue 
area (negative rotation), green area (zero rotation) and red area 
(positive rotation) of lattice rotation field in Fig. 6. The 
geometrically-necessary dislocation density by FEM simulation 
is shown in Fig. 9. It indicates that the magnitude of GND is 

about 1.4×10
14

 m
-2

, which is almost twice of the experimental 
result. This is due to the plastic deformation size predicted by 
FEM is only half of the experiment but the magnitudes of 
rotation are almost same. Similarly, GND contour from FEM 
simulation can be divided into three distinctive regions, 
corresponding to the experimental result of A, B, C region. 
Compared with the experiment, the GND distribution area By 
FEM is quite smaller. This is again due to the assumptions in 
the simulation, such as quasi-static loading and no radial 
expansion of plasma. From the contour of lattice rotation by 
both experiment and FEM simulation, the green area (transition 
zone from negative lattice rotation to positive lattice rotation) 
has the maximum dislocation though the rotation is about zero. 
This is because the lattice rotation mismatch is most 
pronounced in this area. In order to preserve lattice 
compatibility in the case of unevenly distributed plastic slip, a 
large GND dislocation will be accumulated.  

 

 

Fig. 7 Crystal lattice rotation by FEM simulation without 
considering length scale effects 

 
 

 
Fig. 8 The distribution of geometrically necessary dislocation 
density (in m

-2
) from EBSD measurement, corresponding to 

Fig. 6 

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/M

SEC
/proceedings-pdf/M

SEC
2008/48517/293/2716203/293_1.pdf by C

olum
bia U

niversity user on 01 N
ovem

ber 2019
5 Copyright © 2008 by ASME 



D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/M

SEC
/proceedings-pdf/M

SEC
2008/48517/293/2716203/293_1.pdf by C

olum
bia U

niversity user on 01 N
ovem

ber 2019
 
Fig. 9 The distribution of geometrically necessary dislocation 
density (in m

-2
) from FEM simulation, corresponding to Fig. 7 

 
Fig. 10(b)-(d) give the geometrically necessary 

dislocation density by FEM in each active slip system as shown 
in Fig. 10(a). A detailed description of three slip systems under 
plane strain condition can be found in [18]. It can be seen from 
Fig. 10 that GND in slip system i have the biggest magnitude 
and that of slip system iii is the weakest among the three. The 
difference can be explained by considering the Schmidt factor 
in each active slip system. Suppose the loading direction is l, 
the slip plane normal is n, the slip direction is s, the Schmidt 

factor can be represented as )()(coscos lsln ⋅×⋅=× λφ , where 

φ is the angle between n and l and λ is the angle between s and 
l. From Fig. 10(a), we can find that Schmidt factor for slip 
system i, ii and iii is 0.472, 0.315 and 0.263, respectively. 
Therefore, GND in slip system i is greater than that of slip 
system ii; and slip system ii is larger than slip system iii. Beside 
the spatial distribution, temporal evolutions for both lattice 
rotation and GND were presented in Fig. 11 for four different 
material points. The material point of node 1 corresponds to the 
origin (0, 0), which is located on the top surface at the shock 

line center. The material point of node 3 (3µm, -10µm) 

corresponds to the largest GND, which is located 10µm below 

the top surface and 3µm right from the shock line center. The 
other two points are randomly selected. From Fig. 11, we can 
see that GND increases almost linearly after a very short time 
0.1 second and has no direct relationship with the time history 
of lattice rotation. For the origin (0, 0), the lattice rotation 
remains almost zero, but GND in this point increases 
constantly.   

 iiiiiiiiiiii iiii iiiiiiii
x2

x1
Guassian loading[ ]411

[ ]212

[ ]101

[ ]211

[ ]121

o
3.35

o8.105o5.160
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(b) 

 

 
(c) 

 

 
(d) 

Fig. 10 a) Plane strain slip systems corresponding to )411(  

orientation; and GND distribution in each slip system (in m
-2

) 
by FEM simulation: b) in slip system i; c) in slip system ii; d) 

in slip system iii 
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Fig. 11 Temporal evolution for four discrete material points of 
a) lattice rotation and b) geometrically-necessary dislocation 

density 
 
Comparison with conventional indentation Compared 

with laser shock peening, geometrically-necessary dislocation 
density has been well studied in the conventional indentations 
[3, 12, 19, 20]. Furthermore, lattice rotation of indentation is 
relative large. Therefore, it is interest to compare laser shock 
peening with indentation to get some idea of the extent of the 
effects of GND. 

The following shows the comparison with the work by 
Kysar et al. [12] for wedge indentation. In their work, wedge 
indention was performed on aluminum single crystal specimens 

with a wedge apex angle of 90°. The indenter was made of 
tungsten carbide bonded by a ferrous alloy. The indentation 
process was under the load control condition using a materials 
testing system (MTS 810) with a 548 controller. The loading 
direction was along [001] crystallographic orientation and the 
indenter axis were parallel to the [110]. The magnitude of in-

plane lattice rotation ranges from -10° to 10° and the plastic 

deformation zone is quite large, which is about 500µm (depth) 

× 400µm (width). The magnitude of lattice rotation is about 5 
times of that by laser shock peening while the average GND 

density is about 1×10
14

m
-2

 for the indentation and  about 

5×10
13

m
-2

 for µLSP, which is half of the indentation. Thus, 
though the magnitude of lattice rotation is relatively small for 

µLSP comparing with the indentation, the GND density is still 
comparable with that of the indentation. Therefore, like in the 
indentation, length scale effects are also needed to be 

considered in µLSP. 
 

GND Enhanced strength distribution In order to integrate 
the GND hardening into FEM simulation, the yield strength 
increment for each slip system under plane strain condition 
must be calculated from the GND distribution of each slip 
system based on Eq. (7).  For a FCC crystal, the Burgers vector 

is [110]
2

 = 
a

b  and the magnitude is  

 alkh
a

2

2
)(

2

2/1222 =++=b                            (8) 

where α  is the lattice constant, which is 0.405nm for 

aluminum. Thus the magnitude of Burgers vector is b = 0.28 
nm for single crystal aluminum. By projecting Burgers vector 
into the activated slip system, the effective length of Burgers 
 

vector of each slip system can be found. From Kysar et al. [18]  
and Wang et al.[21], only three slip systems should be 
considered under the plane strain condition. Slip system i, 

( ) ]121[111 , is the combination of ]011)[111(
−

 and ]011)[111(
−

, 

slip system ii is the combination of slip systems ]101)[111(
−

 and 

]101)[111(
−−

, and slip system iii, ( ) ]211[111 ,  is the combination 

of ]101)[111(
−

 and ]110)[111(
−−

.  By geometry, the effective 

lengths of Burgers vector are b
2

3
, b  and b

2

3
 for the 

three slip systems, respectively.  

 
 

Fig. 12 Hardening by geometrically necessary dislocation 
density (in Pa) 
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Fig. 13 Temporal evolution for four discrete material points of 
strength increment by geometrically necessary dislocation 

density 
 

Fig. 12 shows the results of hardening by geometrically 
necessary dislocation density for three slip systems. It can be 
seen that the magnitude of the enhanced strength is about 

15MPa and the effected area is around 40µm×60µm. Beyond 
that area, there is almost no length scale effect. Thus length 
scale effects are localized and also vary within this area. 
According to the Schmid law, the slip system starts to glide 

when 
kτ  reaches the critical shear stress of the crystal 0τ . This 
7 Copyright © 2008 by ASME 
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glide causes plastic deformation of the crystal. Shear stress on 

this active slip system is kept at 
kτ  as long as the slip system is 

gliding. Due to hardening caused by geometrically necessary 
dislocation density, the material is difficult to deform.  
 

Effects of GND hardening by FEM results  
In FEM simulation, the strength increment of each 

material point as shown in Fig. 12 was implemented at the 
corresponding node for each slip system during the loading step 
and kept constant during the unloading step. Initially, the 
strength increment is zero and increases linearly to the 
maximum at the end of the first step. This agrees quite well 
with the time history of strength increment as shown in Fig. 13. 
Also, the simulation parameters, such as the loading pressure, 
element type and mesh size, etc. are kept the same before and 
after consideringt GND hardening.  

Fig. 14 shows the comparison of normal displacement of 
the shocked surface. It is found by SPM measurement that the 
deformation is approximately uniform along the shocked line, 
which is indicative of a 2-D deformation state.  The detailed 
cross section profile in Fig.14 shows that the deformation depth 

is about 2µm and plastic deformation size is about 125µm. 

Without the GND hardening, the magnitude is 3.75µm by FEM 
with the assumptions of quasi-static loading with a fixed 
plasma radius. Through the implement of the yield increment 
by GND, the magnitude of the normal displacement is reduced 

to 2µm, which is the same as the SPM measurement. However, 
the only conclusion that may be drawn is the hardening caused 
by GND plays an important role in plastic deformation and can 
not be ignored.  
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Fig. 14 Comparison of normal displacement of the shocked 

surface by FEM with length scale effects and without 
considering length scale effects 

 
Fig. 15 (a)-(b) show the total shear strain distribution, the 

summation of shear strain in three slip systems, in the cross-
section for both cases. The magnitude of the case without 
considering the GND hardening is about 6.6% and 3.7% for the 
simulation with the GND hardening term. In addition, there is 
almost no plastic deformation in the two side regions for the 
case with GND hardening. According to anisotropic slip line 
theory [13], the Gaussian loading can be approximated as a 
non-uniform “punch” and the plastic deformation zone can be 
divided into three regions. One is right beneath the “punch”, the 
 

other two are on the two sides, respectively. For details, one 
can refer to the work by Wang, et al.[21]. In these three 
regions, only slip system iii is active. The stress status in these 

two side regions has 6/ 011 −=τσ , 0/ 022 =τσ  and 

0/ 012 =τσ , where direction 1 is along the surface and 

direction 2 is perpendicular to the surface. Because 0τ  is 

increased along the time quickly in the case considering GND 

hardening, the yield surface will expand and 0τ  will exceed 

11σ  at some point in time. If the shear stress is smaller than 0τ , 

the slip system does not glide, and only elastic deformation is 
possible. Thus, there is almost no plastic deformation in the two 
side regions Q and H.  
 

Comparison of GND hardening and statistically stored 
dislocation (SSD) hardening 

The hardening caused by SSD includes self hardening and 
latent hardening and occurs in both macro- and micro- worlds. 
It has been well investigated and is basic to the constitutive 
crystal plasticity framework [22]. Usually, the local continuum 
constitutive models implicitly assume that the accumulation of 
SSD is the only driving force behind work hardening. Thus, it 
is of interest to compare the hardening effects caused by SSD 
and GND. 
 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 15 Total shear strain distribution: a) without considering 
length scale effects; b) only considering length scale effects; 
and c) only considering the hardening of statistically stored 

dislocation 
 

8 Copyright © 2008 by ASME 



In the simulation considering SSD hardening, Asaro’s 
hardening theory of single crystal [14] has been applied, in 

which the critical shear stress k
0τ  of the Schmid law is 

determined by the current SSD and represents variation of 
hardness of material due to work hardening by SSD. Since 
work hardening of the slip system depends on shear 

deformation of the slip systems, the variation of k
0τ  may be 

estimated by 

∑ ∆=∆
i

i
k
i

k h γτ 0                                                     (9) 

where k
ih  expresses hardening rate against increment of shear 

deformation iγ∆  on each slip system. When k equals i and k
ih  

represents hardening by glide on its own slip system. When k 

does not equal i, k
ih  represents hardening by glide on other slip 

systems. The former is called self hardening, and the latter is 

called latent hardening. The values of  k
ih  can be found in 

Wang et al. [21].  
Fig. 15 (c) shows the FEM result for the total shear strain 

distribution considering of only SSD hardening. It is seen that 
the magnitude is close to that of GND hardening. Also, the 
spatial distribution is comparable with that without any 
hardening; that is, slip system iii is active in both regions H and 
Q.  

 

CONCLUSIONS 

In this study, length scale effects for micro scale laser 
shock peening on a single crystal aluminum with orientation 

[ ]411  are investigated with EBSD measurement and FEM 

simulation with single crystal plasticity.  Given the laser beam 

size at 12µm with intensity of 4GW/cm
2
,  EBSD measurement 

shows that the induced crystal lattice rotation is about ±2°.  The 
magnitude of the corresponding geometrically necessary 

dislocation density is 9×10
13

m
-2

. The spatial distribution of the 
geometrically necessary dislocation density shows the density 
right underneath the shock center surface is high though the 
lattice rotation is close to zero. In addition, the GND induced 

by µLSP is comparable with that of the conventional 
indentation induced severe plastic deformation, which has a 

rotational magnitude of 10°.  The average GND density is about 

1×10
14

m
-2

 for the indentation while it is about 5×10
13

m
-2

 for 

µLSP.  By implementing the GND hardening into FEM 
simulation, it is found that length scale effects can not be 
neglected. The plastic deformation size is significantly 

decreased after considering GND hardening; from 80µm to 

30µm. From the spatial total shear strain distribution, the 
plastic deformation is mainly concentrated right underneath the 
“punch”. Beyond the “punch” radius, there is almost no plastic 
deformation. Also, the comparison with the hardening effects 
of SSDs shows that these two hardenings are comparable with 
each other. The experimental methodology and results of the 
work present a systematic study of the length scale effects for 
the micro scale laser shock peening process. It is now possible 
to integrate length scale effects into the single crystal based 
FEM model to conduct more realistic simulation for the micro 
scale LSP process.  
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