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Pristine single crystal graphene is the strongest known two-dimensional material, and its nonlinear

anisotropic mechanical properties are well understood from the atomic length scale up to a contin-

uum description. However, experiments indicate that grain boundaries in the polycrystalline form

reduce the mechanical behavior of polycrystalline graphene. Herein, we perform atomistic-scale

molecular dynamics simulations of the deformation and fracture of graphene grain boundaries and

express the results as continuum cohesive zone models (CZMs) that embed notions of the grain

boundary ultimate strength and fracture toughness. To facilitate energy balance, we employ a new

methodology that simulates a quasi-static controlled crack propagation which renders the kinetic

energy contribution to the total energy negligible. We verify good agreement between Griffith’s

critical energy release rate and the work of separation of the CZM, and we note that the energy of

crack edges and fracture toughness differs by about 35%, which is attributed to the phenomenon of

bond trapping. This justifies the implementation of the CZM within the context of the finite element

method (FEM). To enhance computational efficiency in the FEM implementation, we discuss the

use of scaled traction-separation laws (TSLs) for larger element sizes. As a final result, we have

established that the failure characteristics of pristine graphene and high tilt angle bicrystals differ

by less than 10%. This result suggests that one could use a unique or a few typical TSLs as a good

approximation for the CZMs associated with the mechanical simulations of the polycrystalline

graphene. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4954682]

I. INTRODUCTION

Since its discovery by Novoselov and Geim,1 graphene, a

two-dimensional allotrope of carbon, has generated extensive

interest owing to its extraordinary electric and mechanical

properties, and the variety of potential applications which they

may allow. Pristine graphene is the strongest 2D material ever

measured with a Young’s modulus of 348 N/m and intrinsic

strength of 39.5 N/m.2 Upon normalizing by the distance

between graphite basal planes (0.335 nm), the Young’s modu-

lus is equivalent to �1 TPa and the intrinsic strength to about

100 GPa. These properties are, however, sensitive to the pres-

ence of defects and, in particular, one-dimensional defects

such as grain boundaries (GBs). The latter are inherent to scal-

able methods of graphene production such as chemical vapor

deposition (CVD).3 The specimens produced in this way are

polycrystalline in nature but retain the two-dimensional char-

acter of graphene. Their size may be millimetric to metric,4

and the grain size may vary from very small (0.5 to 1 lm) to

large (tens to hundreds of micrometers). They would be more

suitable for a variety of applications than pristine graphene

obtained by mechanical exfoliation, provided their mechanical

properties remain attractive.

The mechanical properties of defect-free graphene have

been investigated experimentally by Lee et al.,5 who per-

formed indentation experiments of free-standing circular mon-

atomically thin membranes of graphene using the diamond tip

of an atomic force microscope (AFM). Later, Wei et al.2

established from density functional theory (DFT) calculations

a continuum constitutive law for pristine graphene which is

modeled as an anisotropic nonlinear elastic material. This con-

stitutive law has been validated referring to the aforemen-

tioned experiments by the development of a multiscale model

combining the continuum description provided by the DFT

calculations and a finite element method (FEM) simulation of

the indentation of the circular graphene membrane.6

In 2013, Lee et al.7 performed a set of indentation

experiments to investigate the mechanical properties of poly-

crystalline graphene produced by CVD with small and large

grain sizes. The monatomically thin graphene samples were

transferred onto a silicon substrate patterned with an array of

circular wells (with diameters of 1 and 1.5 lm). The free-

standing membranes were indented with a commercial nano-

indenter up to rupture, see Fig. 1 adapted from Ref. 7 and

notice in Fig. 1(c) the false-colored graphene grains sepa-

rated by GBs as revealed by dark field transmission electron

microscopy (DF-TEM).

These experiments provide two important results for our

own study. First, indentation experiments were performed on

large grain CVD graphene for which the grain size is signifi-

cantly larger than the well diameter that yield free-standing

graphene specimens without GBs. Thus, the specimens did

not contain grain boundaries, but they contained uncharacter-

ized zero-dimensional point (i.e., atomic) defects such as

atomic vacancies or substitutional atoms. Statistical analysis

of the results reveals no significant difference in both the

elastic stiffness and the breaking strength between pristine

exfoliated and CVD produced large grain graphene. This

suggests that the point defect density may be neglected when
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modeling polycrystalline graphene with sufficiently low point

defect density. Second, indentation experiments of small grain

CVD graphene, for which the free-standing specimens contain

GBs, show a statistically significant reduction in strength on

the order of a few percent. Moreover, when GBs are directly

indented, the weakening effect may reach 15% and TEM

images suggest that cracks are likely to initiate at the grain

boundaries. Thus, the GBs are identified as constituting the

main defects necessary to model mechanical failure in CVD

graphene.

As a way to model crack initiation and propagation at

the GB, a cohesive zone model (CZM) may be introduced in

the FEM calculations of polycrystalline graphene deforma-

tion. The first step of this multiscale approach is to establish

the characteristics of the CZM and this will be done at the at-

omistic scale, using molecular dynamics (MD) to simulate

crack propagation along the GB of graphene bicrystals and,

thus, derive a traction-separation law (TSL) characterizing

the properties of the interface. The modeling of the mechani-

cal properties of the GBs of graphene through the develop-

ment of a characteristic TSL constitutes the main objective

of this paper.

The CZM8,9 is a classical concept in fracture mechanics

which has found its implementation in FEM simulations to

account for crack initiation and propagation.10 Intergranular

fracture may be predicted by embedding cohesive surface

elements along grain boundaries that incorporate a traction-

separation law characterizing the interface properties.

Various functional forms of the TSL (bilinear, trapezoi-

dal, exponential, and polynomial) have been proposed for

both ductile and brittle materials.8,9,11–13 They account for

the fracture process at a macroscopic scale and are often phe-

nomenological laws derived from macroscopic experiments.

In the case of polycrystalline graphene, the approach has to

be somewhat different since direct experimentation is not

available. However, owing to the 2D nature of the material,

the grain boundaries are one dimensional. They can be imaged

by high resolution TEM and can be idealized in a fairly accu-

rate way by periodic patterns of aligned defects in the honey-

comb crystal lattice that characterizes graphene. The TSL can

then be established by modeling, at the atomic scale, the crack

propagation along grain boundaries. Molecular dynamics sim-

ulations that account for the aggregate behavior of hundreds

of thousands of atoms are a powerful tool to establish a TSL

for graphene.

Yamakov et al.14 have proposed a methodology to

derive from MD simulations a CZM for intergranular frac-

ture processes in aluminum and to incorporate it in contin-

uum simulations. We shall use the main elements of that

methodology with the objective of obtaining a quantitative

TSL for intergranular fracture in graphene. Our need for a

CZM that may be readily and consistently implemented in

the FEM leads us to complement existing work14–16 with,

first, an energetic validation of the thermomechanical pro-

cess accounted for by the TSL and, second, an analysis of

the scale effect on the parameters of the TSL with regards to

the FEM mesh size. To achieve these goals, the fracture pro-

cess that we simulate by MD is the displacement controlled

fracture of a monatomically thin bicrystal of graphene in the

form of a double cantilever beam (DCB).

The paper is organized as follows. We review, in Sec. II,

fundamental concepts for describing pristine and polycrystal-

line graphene and some important results on their mechani-

cal properties. In Sec. III, we present the methodology to

derive a cohesive zone model from molecular dynamics and

implement it via simulation of controlled crack propagation

along a GB. The results of our simulations on a few repre-

sentative GBs are presented and analyzed in terms of energy

balance and mesh size effect in Sec. IV. We conclude by dis-

cussing in Sec. V the range of validity of this original

approach and its potential extensions.

II. MECHANICAL PROPERTIES OF GRAPHENE
AND ITS GRAIN BOUNDARIES

A. Graphene single crystals and bicrystals

Graphene is the newest experimentally accessible allotrope

of carbon. A sheet of graphene is similar to a tiling of benzene

where the hydrogen is replaced by carbon atoms to form neigh-

boring hexagons. The atoms are arranged in a 2D regular hon-

eycomb lattice due to their sp2 hybridization. This lattice is not

strictly a Bravais lattice since two neighboring sites are not

equivalent. It may be viewed as a hexagonal Bravais lattice

with a two-atom basis. Fig. 2(a) shows the two vectors (a1 and

a2) that constitute along with an out of plane vector, the com-

monly used basis of the 3D hexagonal Bravais lattice. The dis-

tance between nearest neighbor carbon atoms is d¼ 0.142 nm,

which is the average of single and double covalent bond dis-

tance for C. Hence, the lattice spacing that corresponds to the

norm of basis vectors a1 and a2 is a0 ¼
ffiffiffi
3
p

d ¼ 0:246 nm. A

third vector a3, in the plane of (a1; a2), is usually introduced

for the definition of the Miller–Bravais notation of crystallo-

graphic planes and directions.17

Two orthogonal directions within the crystal lattice

referred to as the zigzag and armchair directions can be

FIG. 1. Nano indentation experiments on polycrystalline graphene per-

formed by Lee et al.7 (a) Schematic view of a graphene membrane sus-

pended over a well under the AFM indenter tip. (b) Scanning electron

microscopy image of the suspended graphene layer over holes. The dashed

line indicates the border of the graphene-covered area. (c) False-color dark-

field transmission electron microscopy image of the suspended graphene

film over a hole before indentation. Different colors represent different

grains. The white arrow indicates the indentation point. Scale bars: (b) 3 lm;

(c) 1 lm.
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expressed using the Miller–Bravais notation as ½11�20� and

½1�100�, which are parallel to the x-direction and y-direction,

respectively, in Fig. 2(a).

A graphene polycrystal is an assemblage of single crystals

separated by grain boundaries that are 1D line defects. We are

interested in the simplest of such structures: bicrystals, which

are two crystalline domains linked by a GB. In order to charac-

terize a bicrystal, two parameters are necessary. For instance,

one may use hL and hR (0 � hL; hR � 30�) defined as the

angles between the unit normal vector to the GB and a particu-

lar crystallographic direction of the left and right crystals,

respectively (see Fig. 3). The misorientation angle h between

the two grains is expressed as: h ¼ hL þ hR if hL þ hR � p=6

and h ¼ p=3� ðhL þ hRÞ if hL þ hR > p=6. The equality

hL ¼ hR defines the symmetric GBs.

In 2D materials, a GB is a 1D chain of edge dislocations.

Yazyev and Louie18 have shown that the atomic structure of

a dislocation in graphene can be considered as a pair of posi-

tive and negative disclinations which consist of a five-ring

and seven-ring atomic core, respectively. Hence, graphene

GBs contain pentagonal and heptagonal carbon rings.

GBs observed with high-resolution transmission elec-

tron microscopy (HR-TEM)3,19,20 appear to be composed of

mixed regions of periodic and aperiodic sequences of dislo-

cations resulting in sinuous GBs.20 On the other hand, theo-

retical studies of graphene GBs18,21,22 deal with the idealized

periodic structures. It is important that the periodic structures

consist of the periodic subsequences observed in TEM

images of GBs. In particular, when the idealized periodic

GB retains the sinuous character of a real GB, as is the case

of our two model GBs, it has been shown that the idealized

model accounts very well for the mechanical properties of

the original GB.20,23

Alternately, a GB may be characterized by the compo-

nents (nL, mL) and (nR, mR) of the two periodic translation

vectors dL and dR of the two grains expressed in the respec-

tive ðu; vÞ basis of the underlying hexagonal lattices (Figs.

2(b) and 2(c)). These vectors should match each other along

the GB line to constitute the repeating vector of the GB. The

GB is thus denoted as ðnL;mLÞjðnR;mRÞ. This two-vector no-

menclature, previously used by Refs. 20, 21, 23, and 24,

encompasses the two angles that characterize a grain bound-

ary and make apparent the symmetric or asymmetric charac-

ter of the GB; in addition, one may distinguish GBs for

which the matching between the two crystal lattices is exact

or not. In fact, the length L of each periodic translation vec-

tor is computed from its components (n, m) and the lattice

spacing a0: L ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ nmþ m2
p

. For all symmetric GBs

(ðnL;mLÞ ¼ ðnR;mRÞ) and some asymmetric GBs (e.g.,

ð5; 3Þjð7; 0Þ in Ref. 21), these periodic vectors respect the

commensurability condition in which they have the same

norm. For others asymmetric GBs, there is a mismatch

between the two vectors, as for instance ð7; 0Þjð4; 4Þ in Fig.

2(c) for which LL ¼
ffiffiffiffiffi
49
p

a0 and LR ¼
ffiffiffiffiffi
48
p

a0. This small

mismatch, responsible for a higher GB energy, is accommo-

dated by local lattice distortions and the resulting repeating

vector lies in between the two original vectors.

In our simulations, we shall consider two GBs. The sym-

metric tilt GB ð3; 1Þjð3; 1Þ and the asymmetric tilt GB

ð7; 0Þjð4; 4Þ as presented in Figs. 2(b) and 2(c).

B. Mechanical properties

Graphene exhibits a nonlinear, anisotropic elastic behav-

ior. From density functional theory (DFT) calculation, Wei

et al.2 derived a continuum constitutive relationship suitable

for incorporation into the finite element method. This rela-

tionship results from a Taylor expansion of the elastic strain

energy in strain truncated after the fifth-order term (Fig. 4).

FIG. 2. (a) Graphene honeycomb lattice with the x and y directions for the defini-

tion of the constitutive law of graphene introduced Fig. 4 and the ða1; a2; a3Þ ba-

sis for the definition of crystallographic directions. (b) and (c) Representation of

the translation vectors on the GB ð3; 1Þjð3; 1Þ and GB ð7; 0Þjð4; 4Þ, respectively.

FIG. 3. Definition of the angles hL and hR that describe the orientations of the

two crystals relatively to the GB for the example of the GB ð3; 1Þjð3; 1Þ. h is

the misorientation angle of the bicrystal and d is the repeating vector of the GB.
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It provides a continuum description of graphene, valid for fi-

nite and arbitrary in-plane deformation, which constitutes

the basis of a multiscale model of graphene.

For modeling polycrystalline graphene, as grown by

CVD for instance, in addition to the constitutive behavior of

the bulk, the mechanical properties of the GBs need to be

characterized and several studies have dealt with this issue,

either by numerical simulations using molecular dynamics

(MD) or by experiments using nanoindentation.

When one is interested in the failure mechanics of gra-

phene GBs, two quantities are of interest. The cohesive

strength, defined as the maximum stress that a GB can sus-

tain and the fracture toughness, which is relevant to predict

fracture propagation. Some authors have estimated the cohe-

sive strength of GBs by MD simulations25–27 looking for

dependence with respect to the misorientation angle of the

grain boundary. However, recent studies26 suggest that the

detailed arrangement of defects at the grain boundary and

the orientation of the GB line are also determinant factors

for the strength. Experimental nanoindentation studies7,28

are inconclusive regarding the misorientation angle depend-

ence of the strength of GBs.

The fracture toughness of graphene (single crystalline

and polycrystalline) has been the object of several studies,

both theoretical and experimental. Theoretical studies are

based on MD and coupled quantum/molecular mechanics

simulations. As summarized in the review paper of Zhang

et al.,29 various studies have predicted fracture toughness

values ranging from 2 to 4 eV/Å.

On the experimental side, Zhang et al.30 recently meas-

ured the mode I fracture toughness of polycrystalline gra-

phene by performing pioneering tensile loading experiments

in pre-cracked sheets of polycrystalline graphene. By using a

microelectromechanical (MEMS) device, they were able to

test several bilayer membranes of polycrystalline graphene

in which cracks were initially introduced by focused ion

beam (FIB) cutting with initial crack lengths ranging from

tens of nanometers to 1 lm. Their results show that in the

range of crack length studied, the Griffith criterion of frac-

ture holds in the sense that the product of the critical stress

with the square root of the crack length is constant. They

measured a fracture toughness of 3.3 eV/Å. The typical size

of the grains that constituted the polycrystalline graphene

ranged from hundreds of nanometers to a few microns. Thus,

the fracture toughness they measured corresponds to that

within a graphene crystallite rather than the fracture tough-

ness of the constituting GBs. In contrast, in our multiscale

approach, we are interested in the specific properties of par-

ticular GBs.

The approach that we propose in this work, deriving a co-

hesive zone model of the GBs in graphene, encompasses these

two notions of strength and fracture toughness. Moreover, it

provides a description of the GB that may be incorporated in

finite element models of polycrystalline graphene.

III. METHOD

In the present section, we introduce the concepts and the

methods that we use to build a model that characterizes the

mechanical properties of GBs in graphene. This model is a

cohesive zone model of the GBs, for which our ultimate goal

is the implementation in a FEM which simulates the indenta-

tion experiments of polycrystalline graphene. In the general

case, a CZM should be mixed-mode in order to be able to

take into account fracture processes that are a combination

of different fracture modes (the opening, sliding, and tearing

modes), see, for instance, Park et al.31 In addition, the influ-

ence of stress triaxiality on the CZM may be important as

discussed by Siegmund and Brocks.32 While the CZM can-

not originally account for stress triaxiality, some authors

(see, for instance, Remmers et al.33) have proposed an exten-

sion of the CZM that incorporates that effect.

In the present study, our aim is to develop a single-mode

CZM that is adapted to conditions typical of the indentation

experiments of graphene films. In their FEM simulations of

indentation, Wei and Kysar6 have shown that the highest

stresses are concentrated under the indenter tip and that the

corresponding stress state there is equibiaxial. Also, near the

indenter tip, i.e., where a GB is likely to fail since stresses

are high, the stress state is approximately equibiaxial tensile

and the in-plane shear stress is very small as compared to the

normal stresses. Therefore, the operative mode of fracture is

the opening separation (mode I fracture) and we can neglect

the mode II contributions. Thus, we aim herein at building a

mode I CZM valid in a range of stress states close to equi-

biaxial. To quantify the notion of closeness to an equibiaxial

stress state, we note that our simulations suggest that the

cohesive zone parameters may change by 20% between a

uniaxial tension and an equibiaxial tension. Therefore, when

considering biaxial stress states for which the ratio of the

principal stresses is less than two to one, we can expect that

the CZM will be valid within 10%.

In the first part of this section, we introduce the concepts

that allow to build the CZM. We then develop the principles

of the numerical tool that we use to derive our CZM, i.e., the

molecular dynamics, and review the state of the art in the

MD to CZM scale bridging. Finally, we describe the simula-

tion that we use for deriving our CZM as well as the averag-

ing procedure to transition from the atomistic scale to the

continuum.

FIG. 4. Continuum stress–strain constitutive law developed by Wei and

Kysar2 with a least square fit to ab initio calculations. Superscripts represent

the direction in which uniaxial tension is applied, and subscripts represent

the component of the second Piola–Kirchhoff stress tensor in the (x, y) basis

of Fig. 2.
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A. Cohesive zone model

The concept of cohesive zone was first introduced by

Barenblatt9 for brittle fracture and Dugdale8 for ductile frac-

ture. We focus on the Barenblatt approach, well suited for

the brittle fracture of graphene. It consists in considering a

region near the tip of the crack where the two opposites sides

are subjected to cohesive tractions as depicted in Fig. 5(a).

The cohesive traction, for small crack openings, takes its ori-

gin from the interactions at the atomic scale, and allows to

overcome the problem, present in the linear elastic fracture

mechanics approach, of stress singularity at the tip of the

crack. The region over which cohesive tractions are exerted

is called the cohesive zone and its length, the cohesive zone

length is often assumed to be small with respect to the crack

length. Moreover, the distribution of tractions in the cohesive

zone is described by the so-called traction-separation law

(TSL); see Fig. 5(b) for a typical TSL. The TSL relates the

local opening displacement to the cohesive traction along the

cohesive zone and characterizes the interface. The TSL is

expressed as a function of the separation that increases up to

a maximum traction tm with corresponding separation dm

beyond which failure occurs irreversibly and the force

decreases to zero, which corresponds to the critical separa-

tion dc for which the crack is fully opened. The TSL is char-

acterized by its shape and the values of tm and dc. An

important quantity is the area under the traction–separation

curve which is called the work of separation, wsep, and corre-

sponds to the energy absorbed by the fracture process per

unit length of crack growth. Depending on the shape of the

TSL, two or more parameters may be appropriate for its

identification. If one chooses a bilinear law, as we shall

explain later, the two main quantities to extract from these

experimental curves are tm and dc.

A common way to implement a CZM in an FEM model

of fracture consists in deriving the parameters of the TSL

from experiments. In the context of graphene GBs, the nano-

metric scale at which fracture is studied suggests to extract

the TSL’s parameters by performing MD simulations.

B. Molecular dynamics

MD simulations consist in solving Newton’s equations

of motion at the level of the atoms that compose the material.

It is a phenomenological method of material modeling where

the interactions between the atoms are seen from a classical

mechanics perspective. In MD, time is typically discretized

at the scale of the femtosecond (fs) or 10–15 s, which corre-

sponds to the smallest time scale that we need to resolve,

i.e., atomic vibrations.

The concepts of statistical physics allow then to relate

the trajectories of the atoms and the interatomic forces to

macroscopic quantities such as the strain, the stress, the

potential, and kinetic energies. The primary outputs of MD

are, at each time step, the position and the velocity of each

atom in the system. From these quantities one may derive,

given the potential of interaction between the atoms, the

force exerted on each atom; the potential energy of the sys-

tem Upot that results from the sum of the potential energy of

all the atomic interactions; the kinetic energy of the system

Ukin which is the sum of the kinetic energy over all the atoms

and which is directly related to the temperature. For less

straightforward macroscopic quantities such as the stress,

there exist different methods to derive them from the primary

MD outputs. In Sec. III E, we discuss the Virial definition of

stress. For an exhaustive discussion on the different atomic-

based definitions of stress, see for instance Refs. 34–36.

The atomic interactions are accounted for by a phenom-

enological interatomic potential that embeds all the physics

of the material. Therefore, the accuracy of the results derived

from MD simulations is completely dependent on the valid-

ity of the chosen interatomic potential.

The most widely used interatomic potentials for MD

simulations of graphene are the second generation reactive

empirical bond order (REBO) potential37 and its variant, the

adaptive intermolecular REBO (AIREBO).38 These poten-

tials are designed for carbon and hydrocarbon molecules,

and are based on the Abell–Tersoff bond order formalism.

REBO and AIREBO are pair potentials where only nearest

neighbors interactions are taken into account while many-

body effects are introduced through a bond order function

that parametrizes the properties of each bond with regards to

its environment. The bond order term accounts for the modi-

fication in atomic hybridization when bonds are breaking

and forming. However, it has been noted that the process of

fracture in graphene, as modeled by REBO or AIREBO, is

significantly different from the predictions of the density

functional theory.39,40 This problem has been addressed by

changing the cut-off functions that turn off the atomic inter-

actions beyond the nearest neighbors.25–27,30

Alternately, other groups have developed improved

versions of the REBO potential, especially designed for the

study of bond-breaking processes in carbon-based materi-

als.40,41 As noted by Perriot et al.,41 the use of REBO or

AIREBO potential, as well as the modified cut-off function

versions, has not been properly validated and fails to

describe the bond breaking phenomena. The problem,

encountered in large deformations, in the REBO potential

comes from the contradiction between the need to increase

the cut-off distance to fully describe the nearest-neighbor

interactions and to exclude the second-nearest-neighbor

interactions originally not accounted for in the REBO

potential.

The improvement proposed by Pastewka et al.40 and

Perriot et al.41 to the REBO potential consists in incorporating

FIG. 5. (a) Schematic view of the cohesive zone at the tip of a crack where

a traction t between the lips is associated to a crack opening d. (b) Typical

profile of a traction-separation law embedded in the cohesive zone

model.
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an environment-dependent screening function that allows to

increase the cut-off distance while only keeping the nearest-

neighbor interactions. When the local environment is such

that second- and further-nearest-neighbor interactions are

detected, a function screens these interactions. These screened

environment-dependent potentials have been compared to the

predictions of DFT computations, which are the benchmark

results, in the range of large deformations and for the proc-

esses of fracture, and have proven to yield very good predic-

tions with regards to energy and force profiles as a function of

the interatomic distance. The development and validation of

these potentials are of fundamental interest for the MD simu-

lations of fracture processes in graphene.

In the present work, we have used the screened

environment-dependent potential of Pastewka et al.,40

called REBO2þS, as implemented in the atomistica pack-

age of the MD software LAMMPS.

C. Derivation of CZM from MD

Gall et al.42 and Spearot et al.43 were pioneering in

using MD to investigate the cohesive interface constitutive

relations for a bi-material interface and a GB interface,

respectively. They simulated tensile tests perpendicular to

the interface on small samples of typical size 4 to 8 nm. By

defining a measure of the opening and the tension in the sam-

ple, they derived interface separation relations. However, as

noticed by Yamakov et al.,14 the small size of the sample

and the boundary conditions are such that these authors tend

to model interface adhesion rather than crack propagation.

Instead of interface adhesion, the CZM has originally

been developed to describe the system of cohesive forces in

the terminal region of a crack. Yamakov et al.14 extended

the previous work by switching from MD simulations of ho-

mogeneous interface decohesion to simulations of crack

propagation. The simulated cell, of typical size 100 nm, rep-

resents a bicrystal with a central crack along the GB. This

bicrystal is loaded in order to trigger crack propagation along

the GB. Yamakov et al.14 proposed a methodology that takes

local measures of the stress and the opening displacement

along the propagating crack to compute the TSL. The main

elements of this methodology have been used again by Zhou

et al.15 and Krull and Yuan16 who have investigated the TSL

of interfaces in other contexts.

Herein, we adapt the methodology mentioned above to

the case of mode I intergranular fracture in graphene and

complement it by a quantitative analysis of the TSL for the

purpose of incorporation in a FEM. For our simulations, we

devise boundary conditions that allow an energetic verifica-

tion of the derived TSL, and we discuss the mesh size effect

for the implementation of the TSL in FEM simulations.

D. Description of the simulations

Following Yamakov et al.,14 we derive the TSL charac-

terizing GBs in graphene by defining local measures of stress

and strain in a MD simulation of crack propagation. We use

the MD software LAMMPS (Large-scale Atomic/Molecular

Massively Parallel Simulator)44 with the REBO2þS poten-

tial.40 Unlike previous studies,14–16 we choose the sample,

the boundary conditions, and the loading conditions in order

to control the rate of crack propagation. The above cited

studies are based on simulations where, because of an elasto-

dynamic instability, the crack propagates dynamically. In

contrast, the controlled propagation allows us to perform an

energetic verification of the TSL.

We simulate a finite size specimen that has the shape of

a double cantilever beam (30 nm in width, 120 nm in length,

one atomic layer of thickness) made of a bicrystal of gra-

phene as seen in Fig. 6. The specimen contains, depending

on the GB that it models, around 140 000 atoms of carbon.

The motion of atoms is constrained in the (x, y) plane

through reflective walls located on each side of the sheet so

that, while the local motion of the atoms remains 3D, the

graphene sheet cannot ripple or fold out of plane. This con-

straint does not significantly affect either the qualitative

behavior of the fracture or the quantitative values of the

observables. The edges at y¼6h are free. On the right end

of the beam, atoms within a 0.5 nm wide strip are fixed. On

the left end of the beam, and independently for the two

grains, the atoms belonging to a 0.5 nm wide strip are bound

together in order to form two rigid bodies. These rigid bodies

constitute useful subsets of the structure where one can apply

kinematic boundary conditions. Indeed, the displacement

along the x direction and the rotation around the z axis of

these two rigid bodies are free while the displacement of

their center of mass along the y direction is prescribed by

applying uniform equal and opposite velocities of magnitude

v¼ 4 nm/ns. Thus, vertical prescribed displacements are

qðtÞ ¼ 6vt. With such boundary conditions, a controlled

fracture process is simulated. The resulting local stress state

at the tip of the crack is quasi-equibiaxial, thus reproducing

the stress state under and near the indenter in the indentation

experiment that we aim at modeling.

The time step is set to 1 fs, and the total simulated dura-

tion is 2.5 ns. To focus on the mechanics of the decohesion

and avoid thermal activation effects, the simulation is per-

formed on the NVT ensemble at the prescribed temperature

of 0.1 K through a Nose–Hoover thermostat. Before the load-

ing, the atoms in the bicrystal beam are properly relaxed to

cancel out any initial internal stress which may have been

introduced by the design of the bicrystal and its GB, which

fixes exactly the position of all the atoms. When the pre-

scribed velocity is applied, the mode I crack propagates in a

controlled way along the GB.

The crack tip velocity is on the order of 25 m/s, which

may be compared to the velocity under uncontrolled steady-

state dynamic propagation observed in MD simulations, at

FIG. 6. Schematic view of the double cantilever beam with the boundary

and loading conditions used in MD to derive a TSL.
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1500 m/s, which is about one seventh of the Rayleigh wave

speed.45 The difference between these values is about two

orders of magnitude, which justifies the assumption that the

controlled crack propagation is quasi-static.

E. Definition of the traction and opening displacement

We define N cohesive zone volume elements (CZVE) of

dimensions Lx by Ly along the GB. These CZVE are 2D-

volumes that are called volumes to highlight the fact that

they are used to consider atoms that are within it. More pre-

cisely, atoms inside these areas in the reference configuration

are definitively assigned to the CZVE (Fig. 7(b)). The

stresses in these regions are computed from the 2D-adapted

definition of the atomic stress, based on the Virial theorem36

and defined by

Sa
ij ¼ �

1

Xa mava
i v

a
j þ

1

2

X
b2N að Þ

rab
i f ab

j

 !
; (1)

where i and j are the Cartesian coordinates, ma denotes the

mass of atom a, and va is its velocity relative to the macro-

scopic motion. Xa is the surface area of atom a in the present

configuration, which may be approximated, when possible,

to the one of an atom in the honeycomb lattice in the refer-

ence configuration: Xhon
0 ¼ 3

ffiffi
3
p

4
d2 with d as the interatomic

distance. rab ¼ ra � rb is the displacement vector between

atoms a and b, and fab is the interatomic force exerted on

atom a by atom b. The sum is performed over the set of

atoms NðaÞ, neighbors of atom a that are in its interaction

range. The 2D character of the above defined atomic stress

lies in the division, in Eq. (1), by the atomic surface area

instead of the atomic volume as it is done in the usual 3D

definition of the atomic stress.

The 2D-stress in the kth CZVE is then deduced through

a time and volume average of the atomic stress over the

CZVE

rk
ij ¼

1

NsX
k

XNs

t¼1

X
a2Ak

XaS
a tð Þ
ij ; (2)

where Ns ¼ 2500 is the number of time steps t in the interval

s¼ 2.5 ps over which the average is performed and Ak is the

set of atoms belonging to the kth CZVE. Xk denotes the sur-

face area of the kth CZVE and is computed as the surface

area Xhon
0 times the number of atoms in the CZVE. This mea-

sure of Xk neglects the inhomogeneities in atomic surfaces

introduced by the pentagonal and heptagonal defects (meso-

scopically compensated) as well as the small local strain

around the crack tip.

Note that the atomic stress as defined in Eq. (1) is of prac-

tical interest and provides qualitative information regarding

the stress field at the atomic level but shall not be considered

to be a macroscopic stress measure.36 In contrast, space and

time average of the atomic stress is related to the continuum

notion of Cauchy stress to which it converges in the thermo-

dynamic limit.34–36 The tension perpendicular to the GB,

which is of interest for the mode I TSL, is defined as the yy
component of the 2D-stress measure: rk

yy.

Since the crack is atomically sharp, the opening dis-

placement in the kth CZVE is defined as the average distance

between the atom lines forming the crack edges in this par-

ticular CZVE (the opening is defined as zero in the relaxed

configuration). Like for the stress, the opening displacement

in each CZVE is averaged over 2500 time steps.

The selection of the size of the CZVE over which the

stress is averaged, and our choice of measure of the opening

displacement at the crack edges is developed and justified in

Sec. IV C.

IV. RESULTS AND DISCUSSION

We focus our study on two high angle grain boundaries.

The first one denoted ð3; 1Þjð3; 1Þ is a symmetric GB of tilt

angle 27.8� and the second one denoted ð7; 0Þjð4; 4Þ is an

asymmetric GB of tilt angle 30.0� (Figs. 2(b) and 2(c)).

Fracture simulations of low angle GBs show a competition

between crack propagation along the GB and deviation of the

crack inside one of the grains. This may be due to the structure

of low angle GBs, where the atomic defects (pentagons and

heptagons) do not form an almost continuous line but are sep-

arated by domains of undisturbed lattice (hexagons).

FIG. 7. Double cantilever beam sample

for the calculation of the CZM with the

GB ð3; 1Þjð3; 1Þ. (a) and (b) correspond

to the relaxed reference configuration.

Red solid lines delimit the CZVE on

which stress is averaged. Red dashed

lines delimit the atoms considered for

defining the opening displacement. (c)

and (d) correspond to snapshots of the

propagating crack at the time 1.25 ns.

Colors represent the yy-component of

the atomic stress. For viewing, we used

the software OVITO.46
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As a reference, we also determine the TSL for a crack

that propagates in the bulk of pristine graphene along the

½1�100� direction (or armchair), i.e., the direction y shown in

Fig. 2(a).

A. Traction separation laws

For each one of the 55 CZVEs dispersed along the GB,

we superpose in Fig. 8 all the traction-separation points

measured from the beginning of the simulation to the time

1.25 ns. In fact, each CZVE goes through the steps where the

local stress progressively increases until the point where the

crack goes through the CZVE and the stress drops. These dif-

ferent steps appear in Fig. 8 for all the 55 CZVE, and it can

be seen that the traction-separation relation propagates in a

self-similar way as the crack propagates through the sample.

For the purpose of implementation in FEM, we need to

derive from the set of tractions and separations obtained in

MD an analytical expression of the TSL that includes physi-

cally significant parameters, namely, the peak traction tm and

the work of separation wsep. Fig. 8 suggests the use of a bilin-

ear TSL such as the one proposed by Geubelle and Baylor13

that is entirely defined by three parameters: the peak traction

tm, the corresponding separation dm for the ascending part, and

the critical separation dc at which the traction vanishes for the

decreasing part. The work of separation is then expressed by

wsep ¼
1

2
tmdc: (3)

One notices that the value of dm does not appear in the

expression of wsep, given the approximate triangular shape

chosen for representing the TSL. Fig. 8 shows the bilinear

TSL fitted to the simulation points for the GB ð3; 1Þjð3; 1Þ,

and Table I reports the parameters that characterize the bilin-

ear TSL for armchair bulk graphene, the GB ð3; 1Þjð3; 1Þ, and

the GB ð7; 0Þjð4; 4Þ. The comparison of the parameters of the

three derived TSL shows that the main characteristics of the

TSL differ by less than 10%. In particular, the work of separa-

tion that corresponds to the fracture toughness of the GB

shows little difference with pristine graphene. Quantitatively,

the fracture toughness of the two studied GBs is less than 7%

lower than the one of pristine graphene with a ½1�100� crack.

B. Energetic analysis

The CZM approach has to be consistent with the ener-

getic approach of crack propagation developed by Griffith47

for virgin homogeneous solids and generalized by Irwin and

Orowan48 to fracture occurring between unlike bodies or at

singular interfaces.

This consistency lies in the equality between the work

of separation wsep of the CZM and the fracture toughness Gc

of the material or the GB.10,49 For a demonstration of the

equivalence between wsep and Gc based on the J-integral, see

Lawn.50 On the one hand, the work of separation corre-

sponds to the mechanical energy absorbed by the cohesive

forces per unit length of fully opened crack (d� dc). It is a

characteristic of the TSL that describes the cohesive traction.

On the other hand, the fracture toughness, also called crack-

resistance energy, expresses the ability of a material or an

interface to resist to crack propagation. It gives a criterion

for an equilibrium crack propagation called as the Griffith

energy balance concept50

G ¼ Gc; (4)

where G is the mechanical energy release rate defined by

G ¼ � @P
@a

; (5)

with P as the mechanical potential energy and a as the crack

length.

We are thus able to investigate the internal consistency

of the TSL in terms of energy by comparing the values of

wsep and Gc.

First, the calculation of wsep from TSL parameters is

straightforward by applying Eq. (3). We can estimate that

there is an uncertainty of about 10% on the value of wsep that

comes from an uncertainty of �5% on both tm and dc.

Second, to derive Gc, we use the equilibrium crack prop-

agation condition Eq. (4). Indeed, in our simulations, the

FIG. 8. Superposition of the MD computations of the traction and opening

displacement measured in 55 CZVE along the GB ð3; 1Þjð3; 1Þ during crack

propagation from s¼ 0 to s¼ 1.25 ns. Different colors represent the values

computed in different CZVEs. A bilinear traction-separation law is fitted to

the MD measures. The work of separation wsep corresponds to the area under

the bilinear fit.

TABLE I. Parameters of the bilinear TSLs obtained by a fit to the MD com-

putations for the three studied configurations: Pristine graphene with a crack

along the ½1�100� armchair (AC) direction, the GB ð3; 1Þjð3; 1Þ, and the GB

ð7; 0Þjð4; 4Þ. For instance, the parameters of the GB ð3; 1Þjð3; 1Þ correspond

to the TSL drawn Fig. 8.

Specimen tm (N/m) dm (Å) dc (Å) wsep (eV/Å)

Pristine (AC crack) 24 0.2 4.1 3.1

GB ð3; 1Þjð3; 1Þ 24 0.1 3.8 2.9

GB ð7; 0Þjð4; 4Þ 24 0.2 4.0 3.0
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crack propagation is controlled in the sense that to a continu-

ously varying prescribed displacement corresponds a quasi-

continuous variation of the crack length. As may be seen in

Fig. 9, the crack moves by successive jumps that correspond to

the periodic pattern of the GB and this characterizes bond trap-

ping, a phenomenon that we discuss later. Notwithstanding this

atomic scale specificity, from the continuum point of view, we

observe on average controlled crack propagation unlike the

typical catastrophic failure observed in uniform tensile loading

experiments.

With the displacement boundary conditions applied in

our simulation, the mechanical potential energy P involved

in the definition of G Eq. (5) is equal to the elastic energy

Uel.

Uel appears as a component of the internal energy Uint

that is a primary output of MD defined as the sum of the

potential Upot and kinetic Ukin energies introduced in Sec.

III B. Note that in our simulations, because of the thermostat

at 0.1 K and the low velocity of the prescribed displacement,

the kinetic energy which is three orders of magnitude less

than the potential energy is negligible, hence, Uint¼Upot.

To compute Uel, we note that

Uint ¼ Uel þ Uedge ¼ Uel þ 2cg
ea; (6)

where cg
e is a generalized measure of the edge energy per

unit of length, that is

• For a crack in the bulk, 2cg
e ¼ 2ce with ce as the edge

energy per unit of length of the newly created edge.
• For a crack along a GB, 2cg

e ¼ 2ce � cGB with ce as the

edge energy per unit of length of the newly created edge

and cGB as the energy recovered from the destruction of

the GB. Note, however, that this decomposition is in the

case of graphene rather artificial. Indeed, some pentagon

and heptagon defects may remain, after fracture, on either

side of the crack, making thus the decomposition of 2cg
e in

surface energy created and grain boundary energy recov-

ered meaningless.

In both cases, 2cg
e is defined and obtained from the dif-

ference in potential energy Upot between the broken and

non-broken relaxed configurations with periodic boundary con-

ditions (PBCs) shown in Fig. 10 divided by the crack length.

Indeed, from Eq. (6), the difference in internal energy (that is

potential energy in the absence of kinetic energy) between the

two configurations of Fig. 10 corresponds to 2cg
ea.

We then compute the evolution of Uel—and thus P—by

inverting Eq. (6).

We describe the state of the system at time t with two

variables: q(t) is the prescribed displacement (see Sec. III D)

and a(t) is the crack length; hence, Pðq; aÞ ¼ Uelðq; aÞ is a

function of these two variables that are linked, at equilibrium

crack propagation, by Eq. (4).

We use a simple Bernoulli–Euler beam model of the

DCB simulation with an isotropic linear elastic constitutive

law to relate G to the total derivative of Pðq; aÞ with respect

to a, taking into account the relation q(a) satisfied during

crack propagation. The linear isotropic model is reasonable

given that strains in the DCB are, except near the crack tip,

less than 0.5% (see Fig. 4). Denoting E as the 2D-Young’s

modulus with dimension force per length and h as the width

of DCB’s arms (Fig. 6), the mechanical potential energy can

be written51

P q; að Þ ¼ Eh3 q2

4a3
: (7)

Writing the equilibrium crack propagation condition Eq. (4)

with G computed with Eqs. (5) and (7), we obtain the rela-

tion between a and q

q að Þ ¼
ffiffiffiffiffiffiffiffiffiffi
4Gc

3Eh3

r
a2: (8)

That allows us to write P as a function of a only

~P að Þ ¼ P q að Þ; að Þ ¼ Gca

3
: (9)

Hence, Gc may be deduced from the total derivative of ~PðaÞ
that is computed from the molecular dynamics outputs

Gc ¼ 3
d ~P
da

: (10)

In Fig. 11, we plot the function ~PðaÞ as computed from

MD. We can see that notwithstanding the saw-tooth pattern

in ~PðaÞ related to atomic scale phenomena, the overall evo-

lution of the function that is to be considered in the contin-

uum approach is linear in accordance with Eq. (9), except in

FIG. 9. Evolution of the crack length a(t) under the constant velocity pre-

scribed displacement q(t) in the double cantilever beam simulation described

in Sec. III D for the GB ð3; 1Þjð3; 1Þ.

FIG. 10. Schema of the two configurations used to compute the generalized

edge energy cg
e as defined in Sec. IV B. cg

e is computed from the difference

in potential energy between the broken and non-broken states divided by

twice the length of the crack.
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the crack initiation region where the beam model is not

appropriate. The slope of the linear fit to the function ~PðaÞ
and Eq. (10) yields Gc. For the GB ð3; 1Þjð3; 1Þ, we obtain

Gc¼ 2.7 eV/Å.

Table II presents the values of the work of separation for

the modeled TSLs, the fracture toughness, and the edge

energy for the three studied configurations. Their comparison

shows that the work of separation of the derived TSLs falls

within 10% of the fracture toughness for the configurations

studied. Therefore, the TSLs proposed for FEM implementa-

tion are energetically consistent with the energy based

approach of Griffith for crack propagation. The values of

fracture toughness obtained for the grain boundaries and the

bulk graphene are consistent with the empirical measures of

the fracture toughness of polycrystalline graphene performed

by Zhang et al.30 They have measured the critical fracture

stress of nanocracked polycrystalline graphene sheets and

obtained an empirical value of the fracture toughness of

15.9 J/m2 or 3.3 eV/Å. This measure which represents a mi-

croscopic homogenized measure of the fracture toughness is

expected to lie in the range of the nanoscopic fracture tough-

nesses of bulk graphene and its grain boundaries. Indeed, our

computation of nanoscopic fracture toughnesses reported in

Table II is of the same order as the microscopic fracture

toughness measured by Zhang et al.30

Table II also reports the values of 2cg
e that correspond to

2ce for the bulk and 2ce � cGB for the GBs. In all the cases,

the fracture toughness is about 35% higher than 2cg
e which is

consistent with the fact that 2cg
e is a lower bound of the

energy per unit length required to propagate a crack. The

difference between 2cg
e and fracture toughness is likely to

be attributed to the phenomenon of bond trapping.52,53

Whereas it is often assumed that the fracture toughness cor-

responds to the edge energy created decreased by the grain

boundary energy, bond trapping at the atomic scale may

require greater amount of energy to propagate the crack.

The concept of bond trapping comes from the fact that frac-

ture propagation is ultimately determined by the strength of

interatomic bonds. The crack may be caught in a metastable

state where an energy barrier needs to be crossed to allow

the propagation.54,55 The extra energy is supposed to be

transported in the lattice vibrations or, for the thermostated

case, in the heat bath itself.

This thermal dissipation appears clearly when we check

the energy balance of the global system. Thermodynamic

quantities that characterize energy transfers are the internal

energy Uint, the work W received by the system from exter-

nal forces, and the heat Q received by the system from the

thermostat. Fig. 12 shows that during the delamination pro-

cess, the work provided by the external reaction forces is

larger than the change in internal energy, and concurrently,

heat is released by the system to the thermostat (Q< 0).

Since we check that Uint �W � Q is constant with time (see

Fig. 12, numerically, the deviation in Uint �W � Q from

zero remains less than 3% of W), the first law of thermody-

namics DUint ¼ W þ Q is satisfied, which is to say, in MD

terms, that the energy is conserved. The difference between

Uint and W indicates that not all the work provided by the

external forces to the system is transmitted to the internal

energy. This thermal dissipation is consistent with the bond

trapping that we have previously identified.

C. Mesh size choice and effect

Because of the high gradients of stress at the tip of the

crack, we expect the traction-separation response to depend

on the size of the CZVE. An interesting discussion on the de-

pendence of the traction-separation relation on the exact

FIG. 11. Mechanical potential energy of the double cantilever beam as com-

puted in the MD simulation with a linear fit of the average evolution in ac-

cordance with Eq. (10) of the continuum model.

TABLE II. Work of separation wsep of the TSL, fracture toughness Gc, and

generalized edge energy 2cg
e for the three studied configurations: Pristine

graphene with a crack along the ½1�100� (or armchair) direction, the
GB ð3; 1Þjð3; 1Þ, and the GB ð7; 0Þjð4; 4Þ. All linear energies are expressed
in eV/Å.

Specimen wsep Gc 2cg
e

Pristine 3.1 2.7 2.2

GB ð3; 1Þjð3; 1Þ 2.9 2.7 1.9

GB ð7; 0Þjð4; 4Þ 3.0 2.8 1.9

FIG. 12. Energy balance of the delamination simulation of the GB

ð3; 1Þjð3; 1Þ. Uint, W, and Q are, respectively, the internal energy of the DCB

system, the work received from the two external reaction forces causing the

delamination and the heat received from the thermostat. Kinetic energy is

negligible. That Uint �W �Q is constant and zero to within the accuracy of

the MD simulation demonstrates conservation of energy.
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definition of the opening displacement and the traction at the

atomic scale can be found in Gall et al.42 We explain here

that the choice of the CZVE size in which stress and dis-

placement are computed is justified by quantitative analysis

of the TSL. Generally speaking, the CZVE should be small

enough to resolve the stress gradient near the crack tip but

large enough to ensure that the atomic scale variations of the

atomic stress (i.e., the value of the Virial stress for individual

atoms) are smoothened. The last condition ensures that the

Virial stress averaged over the CZVE converges sufficiently

close to the Cauchy stress. Nevertheless, since the TSL is

itself an interpolation of the stress-separation measures, a

perfect convergence of the CZVE average to the continuum

definition of the Cauchy stress is not necessary.

First, the width Ly in Fig. 7 of the CZVE should be large

enough to encompass the pre-stress field, due to the

pentagon-heptagon defects, whose size characterizes the

“width of the GB.” The lower bound for Ly thus lies about

8 Å. The choice of Ly should also resolve the stress gradient

in y-direction that spans over about 30 Å (30 Å is the length

over which the atomic stress is reduced by four). Within this

range, we choose Ly¼ 10 Å, noting that any value between

8 Å and 20 Å provides TSL’s parameters that differ by less

than 5%.

The second parameter is the length Lx of the CZVE.

Yamakov et al.14 noticed that the length of the CZVE gives

a length scale inherent to the computed TSL. This length

scale will be used in the FEM as the interface element

length. Thus, considering the mesh size of the FEM in which

the TSL will be implemented provides an enlightening

insight for the choice of Lx.

There exists an intrinsic length scale along the crack

path when implementing the CZM which is the cohesive

zone length. The cohesive zone length is a characteristic

length of the process zone over which traction is exerted. It

is defined by Hillerborg et al.10 as

lcz ¼
EGc

tm
2
; (11)

where E is the Young’s modulus of the material.

For the FEM implementation of the CZM to converge,

the FE mesh along the cohesive surface elements must

resolve the stress gradient in the cohesive zone; practically,

the cohesive zone length should contain at least two to three

elements.56 In the case of graphene, taking E ¼ 340 N=m

(Ref. 5) and Gc ¼ 3:0 eV=Å; tm ¼ 25 N=m as average values

for the studied GBs, the cohesive zone length is:

lcz ¼ 2:6 nm. Therefore, in order to have three elements or

more within the cohesive zone, the length of the cohesive

zone elements should be less than or equal to le¼ 0.9 nm.

This first analysis provides an upper bound for the length Lx

of the CZVE. On the other hand, Lx should be large enough

to give a good estimate of the Cauchy stress and, if possible,

should be a multiple of the repeating length of the pattern of

defects in order to smooth out the atomic scale stress

variations.

Giving these constraints, the length of the CZVE is taken

close to 9 Å, the exact values being adjusted with the repeating

length of the GB that are 8.9 Å for the GB ð3; 1Þjð3; 1Þ and

17.0 Å for GB ð7; 0Þjð4; 4Þ. We therefore choose for the

CZVE length: Lx¼ 8.9; 8.5; 9 Å, for the GB ð3; 1Þjð3; 1Þ, the

GB ð7; 0Þjð4; 4Þ, and bulk graphene respectively.

The modification of Lx on the TSL is such that an

increase in Lx reduces tm while keeping the work of separa-

tion wsep constant. Therefore, the comparison of the maxi-

mum traction tm of the TSL with the expected value provides

another way to set the value of Lx. Indeed, tm corresponds

physically to the maximum stress sustainable by the grain

boundary and gives the criterion for crack initiation. By per-

forming equibiaxial tensile simulations on flawless bicrystals

(that correspond to the crack tip stress state for which the

TSL is derived), we have determined the expected value of

tm. We have performed simulations on bicrystal samples of

dimensions 60 nm � 30 nm containing two GBs to enforce

periodic boundary conditions in the two in-plane directions.

See Fig. 13 for a schematic view of the performed tensile

simulations. We have obtained, under equibiaxial stress

state, the strength of the grain boundary and the bulk by

computing the maximum normal component of the stress in

the x-direction, reached before failure. For the three configu-

rations, GB ð3; 1Þjð3; 1Þ, GB ð7; 0Þjð4; 4Þ, and bulk graphene,

we compute a strength under equibiaxial stress state of

(24 6 0.5) N/m. The maximum stresses tm of the TSLs given

in Table I correspond to this reference value of strength, fur-

ther confirming the consistency of the choice of 9 Å for Lx.

Lastly, we discuss the definition of the opening displace-

ment. Yamakov et al.14 defines the separation as the distance

between the CZVE averaged over all the atoms in the CZVE

while Krull and Yuan16 only take the pair of closer atoms on

both sides of the crack to define the separation. It can be

understood that the location where the opening displacement

is measured only affects the value of the separation dm at

which the maximum stress is reached. This is because the

opening displacement is, regardless of where it is measured,

defined relative to the uncracked state for which d¼ 0;

whether it is defined between the crack edges or between

areas encompassing the edges does not change the value of d
when the crystals are relaxed. Thus, the critical displacement

dc at which the traction falls to zero is independent of the

exact definition of the separation and it is only dm, and con-

sequently, the initial slope of the TSL that is affected by that

choice. The dependence of the TSL on the definition of

the separation, as described above, has been numerically

FIG. 13. Schema of the simulation cell used to compute the intrinsic strength

of the grain boundaries. Periodic boundary conditions are enforced along the

x- and y-directions.
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observed by Zhou et al.15 Given that the modification of the

definition of the separation amounts to changing the initial

slope of the cohesive zone while keeping the other parame-

ters tm and dc unchanged, we examine the meaning of the ini-

tial slope with respect to the FEM implementation of the

TSL. The slope of the increasing part of the TSL is referred

as the interface stiffness; however, it does not really corre-

spond to a physical concept since it depends on the size of

the volume that is considered to be the interface. Instead, the

value of the interface stiffness is rather based on numerical

considerations in the FEM implementation. The interface

stiffness should be large enough to make sure that the contri-

bution of the cohesive elements to the global compliance

remains small but not too high to avoid numerical problems

such as stress oscillations.56,57 Given the fact that it is mainly

numerical aspects related to FEM that govern the choice of

the interface stiffness used in the implementation of the

CZM, we provide herein a TSL based on the physical defini-

tion of the separation for an atomically sharp crack. This def-

inition corresponds to a measure of the separation exactly at

the atoms forming the crack edges. A measure further away

from the crack would include a contribution of the bulk to

the interface description. For the FEM implementation, the

interface stiffness would have to be properly adapted to the

numerical context.

D. Discussion on the FEM implementation

As discussed in Sec. IV C, for a successful implementa-

tion of the CZM in the FEM, the cohesive zone length should

contain at least three elements, bringing the element size

down to le¼ 0.9 nm. To reduce the computational cost of

such a FEM simulation, it is of practical interest to be able to

implement the CZM with coarser mesh sizes that exceed the

cohesive zone length. Such a method has been proposed by

Turon et al.56 who showed that delaminations were well pre-

dicted by FEM simulations with a mesh size up to three

times the cohesive zone length provided that the TSL was

properly scaled. In short, the scaling of the TSL consists,

when the length le of a cohesive interface element does not

resolve the cohesive zone length any longer, in reducing the

peak traction as 1=
ffiffiffiffi
le

p
while keeping the fracture toughness

constant.

More precisely, the scaling procedure proposed by

Turon et al.56 to accurately model a delamination process

with CZM implemented in a FEM with elements larger than

the cohesive zone length lcz is based on the following idea:

Although it is the peak traction of the TSL tm that governs

the crack initiation, the crack propagation is essentially con-

trolled by the work of separation wsep. Further, it was

observed numerically that changing the peak traction does

not significantly alter the FEM predictions of a delamination

process but that lowering that peak traction improves the

convergence of the results with respect to the element size le.
To be understood, these observations may be put in perspec-

tive with the need to resolve the cohesive zone length with

the element size. The cohesive zone length is related to the

size of the elements that discretize it through the formula

lcz ¼ Nele: (12)

Then, by combining Equations (11) and (12), one gets the

relation between the peak traction and the size of one

element

tm ¼

ffiffiffiffiffiffiffiffiffi
EGc

Nele

s
: (13)

Eq. (13) is a way to express the finite element size le given

the peak traction tm of the TSL and by fixing the number of

elements Ne in the cohesive zone length to a value large

enough in order to discretize the stress profile accurately

enough.

The strategy proposed consists in scaling the TSL in

such a way that, first, Ne is kept to the chosen value—Ne¼ 3

is a minimum for a resolution of the cohesive zone—and sec-

ond, Eq. (13) is satisfied. Practically, one may fix le to an ar-

bitrary value le larger than lcz/Ne and scale the peak traction

of the TSL to the artificial value tm that results from Eq. (13)

in which le has been substituted to le. This amounts to defin-

ing an artificial larger cohesive zone length lcz ¼ Nele that is

properly discretized. Moreover, the scaling of the TSL

should be done at a constant work of separation in order to

conserve a good mechanical energy balance. The critical

opening displacement dc will be increased accordingly.

Turon et al.56 have shown numerically that this proce-

dure allows to accurately predict the delamination process

for an element size le set up to three times the cohesive zone

length lcz. The accuracy of the results can be seen in the esti-

mate of the macroscopic load versus displacement.

However, with such a scaled TSL, the stress concentration at

the crack tip will not be well predicted.

We have observed a quite similar rescaling behavior

when changing the CZVE length Lx in the MD extraction of

the TSL. Indeed, Fig. 14 and the TSL parameters reported in

Table III show that when the length of the CZVE exceeds

0.9 nm (i.e., one third of the cohesive zone length), that is to

FIG. 14. Dependence of the TSL on the length Lx of the CZVE for the GB

ð3; 1Þjð3; 1Þ. Individual crosses show the traction-separation MD measures

and solid lines represent the bilinear fitted TSLs. Note that when Lx

increases, tm decreases while keeping the work of separation conserved.
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say, it does not resolve the cohesive zone length, the peak

traction of the TSL is reduced as 1=
ffiffiffiffiffi
Lx

p
while conserving

wsep. Saether58 has suggested that the length of the CZVE Lx

should be the same as the cohesive surface element size le in

the FEM mesh, and our numerical results put in perspective

with the work of Turon et al.56 tend to confirm this idea.

On the basis of the work of Turon et al.,56 we expect

that a FEM simulation with a cohesive surface element size

of 5 nm embedding the corresponding scaled-TSL will prop-

erly model the crack propagation for a lower computational

cost, although the stress concentration at the crack tip will

not be resolved. Table IV gives the scaled-TSL parameters

for the two GBs and the bulk corresponding to an element

size le¼ 5 nm. However, this scaling procedure has been

validated for the delamination process only and it may be,

since the crack initiation is governed by the value of tm, that

the prediction of the crack initiation will not be accurate

when using the elements that are larger than 0.9 nm. The pro-

posed scaled-TSL may be a way to model a phenomenon at

a reasonable computational cost, but will miss other features

for which a finer mesh will remain necessary.

V. CONCLUSION

For the purpose of developing a multiscale model of

nanoindentation experiments performed on polycrystalline

graphene, we have developed cohesive zone models of inter-

granular fracture that may be implemented in FEM. We have

derived, from molecular dynamics, traction-separation laws

that characterize high tilt angle grain boundaries. Grain

boundaries of tilt angle 27.8�, 30.0�, and pristine graphene

have been investigated. We have performed MD simulations

that reproduce the biaxial stress state to which the graphene

is subjected during the indentation experiments in order to

derive TSLs that correspond to the framework in which they

will be implemented.

The MD simulations are designed to ensure a controlled

crack propagation that allows an energetic validation of the

TSL based on a comparison of the work of separation of the

TSL and the fracture toughness of the sample. The energy

absorbed by the cohesive tractions corresponds to the frac-

ture toughness measured through the energy release rate dur-

ing the equilibrium crack propagation. Our computation

agrees with the experimental measures of the fracture tough-

ness of polycrystalline graphene performed by Zhang et al.30

at the microscale. However, the fracture toughness turns out

to be greater by about 35% than the energy thermodynami-

cally necessary to create the two new edges: 2ce � cGB. We

attribute this difference to the phenomenon of bond trapping

that specifically appears in atomic scale fracture.

The consistency of the TSL is discussed in relation to

the mesh size effects introduced by the averaging procedure

over the cohesive zone volume elements. When the scale

over which atomic quantities are averaged is too large to

resolve the traction distribution in the cohesive zone, in our

case larger than 0.9 nm, the parameters of the TSL depend

on the length of the volume elements. This dependence is

such that the maximum traction tm of the TSL is lower for

coarser meshes while conserving the work of separation.

When considering the FEM implementation of the CZM, the

optimization of the computational cost encourages us to pro-

vide a TSL that could be implemented with coarser meshes.

Therefore, we propose particular scaled-TSLs adapted to

finite element surface elements ranging from 0.9 to 5 nm.

We have focused our study on two high angle grain

boundaries and one type of intragranular crack under condi-

tions of biaxial traction at the crack tip. The derived TSLs

show that the TSL parameters, and in particular, the fracture

toughness of the high angle grain boundaries, remain compa-

rable to the fracture toughness of the bulk. This provides a

new point of view on the impact of the grain boundaries on

the mechanical properties of graphene. Further work will be

needed to extend the cohesive zone model to low angle grain

boundaries. Moreover, we have noticed a dependence of the

TSL on the stress state applied at the tip of the crack, the

TSLs are currently derived for quasi-equibiaxial stress states

that correspond to what a graphene sheet experiences under

the indentation tip. Supplementary investigations would be

necessary to extend the TSL to other stress states.
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