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A B S T R A C T

Plastic strain recovery is a distinctive behavior of nanocrystalline thin film metals whereby
plastic strain induced via application of an external load is gradually recovered over a time
period of hours to days after load removal. Previous studies to model plastic strain recovery
assumed that grain boundary sliding or grain boundary diffusion with heterogeneous diffusivity
was the dominant deformation mechanism. In this study we propose that grain boundary dif-
fusion in the presence of nanoscopic voids can lead to plastic strain recover without having to
assume a sliding or heterogeneous diffusivity on grain boundaries. To model the system nu-
merically in the context of the finite element method, we include a diffusion zone (DZ) and a
cohesive zone (CS) on the grain boundaries and also include the possibility of plastic deformation
in the surrounding grains. Our results suggest that diffusion leads to a mass flux toward the “void
tips” (i.e. intersections of the voids and grain boundaries) as the external load is applied. Upon
removal of the load, the additional material that accumulated near the void tips introduces a
compressive residual normal stress on the grain boundary. The gradient of grain boundary re-
sidual stress leads to diffusion flux away from the void tip along the grain boundary in addition to
diffusion flux to the void surface from the grain boundary. This redistribution of mass leads to a
reduction in specimen length that is interpreted in terms of plastic strain recovery. With time the
diffusion flux reduces the grain boundary stress gradient to the point where further grain
boundary diffusion flux becomes negligible, after which diffusion flux occurs predominantly from
the grain boundary at the void tip to the void surface. Since only one mass flux route remains
active, the predicted plastic strain recovery rate is smaller. These simulation results are consistent
with our experimental results that indicate plastic strain recovery exhibits two characteristic
rates: a “fast” strain rate of about − −[10 ] s7 1 followed by transition to a “slow” strain rate of about

− −[10 ] s9 1.

1. Introduction

Nanocrystalline thin metal films with an average grain size less than [100] nm have been the subject of widespread research in
recent years due to their enhanced material properties and behavior compared to their coarse-grain counterparts. These material
properties include higher yield strength, fracture strength, and strain rate sensitivity (Gleiter, 2000; Kumar et al., 2003a; Weertman,
2007). One of the unique properties of nanocrystalline thin film metals is a phenomenon called plastic strain recovery, where plastic
strain introduced through a load cycle is gradually recovered (i.e. reversed) under no external loading over a time period of hours and
days (Rajagopalan et al., 2007; WeiKysar, 2011; Ghazi and Kysar, 2016). However plastic strain recovery is not a reversible process in
the thermodynamic sense because energy is dissipated during the load cycle. Along with the inverse Hall-Petch effect (Schiotz et al.,
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1998; Conrad and Narayan, 2000; Wolf et al., 2003), plastic strain recovery in nanocrystalline materials is a phenomenon that is
counterintuitive to our understanding of inelastic deformation in microcrystalline materials and thus presents the opportunity to
study the interactions between different deformation mechanisms at the nanometer length scale.

In microcrystalline materials, the dominant deformation mechanisms for plastic deformation are the creation, motion, and
multiplication of dislocations. However when the grain size of the material is reduced to the nanometer scale, the small grain volumes
constrain the activation of bulk dislocation sources, inhibiting dislocation-mediated plastic deformation, and making it possible for
nanocrystalline metals to achieve significantly higher stresses than their microcrystalline counterparts. Given the high stresses
coupled with the large volume fraction of grain boundaries in nanocrystalline metals, inelastic deformation in nanocrystalline metals
is often dominated by grain boundary deformation mechanisms (Meyers et al., 2006; Hahn and Meyers, 2015) including grain
boundary diffusion and grain boundary sliding (Swygenhoven and Derlet, 2001; Wei and Anand, 2004; Wei et al., 2008a). The
inverse Hall-Petch effect and strain rate sensitivity (Wei et al., 2004, 2008b) observed in nanocrystalline metals—but not in mi-
crocrystalline metals—are also the result of grain boundary deformation mechanisms.

Plastic strain recovery occurs at very small rates ranging from − −10 s9 1 to − −10 s7 1 (Rajagopalan et al., 2007; Ghazi and Kysar, 2016;
Wei et al., 2007) suggesting that grain boundary diffusive mechanisms play a key role in the phenomenon (WeiKysar, 2011; Wei
et al., 2008b). A number of prior models suggest that plastic strain recovery is driven by residual stress in the film induced during
loading. Several models propose that creep deformation due to residual stresses caused by grain size heterogeneity is responsible for
recovery (Spolenak et al., 2001; Rajagopalan et al., 2008; Koslowski, 2010). Other models propose that the dominant deformation
mechanism is the nucleation and activation of dislocations (Xie and Koslowski, 2016). Finally, others propose that grain boundary
diffusion accommodated by sliding or plasticity inside the grains plays the key role in plastic strain recover (WeiKysar, 2011; Wei
et al., 2008a; Li et al., 2009).

In this paper we propose a new mechanistic model for plastic strain recovery in nanocrystalline thin films based on the hypothesis
that grain boundary diffusion is the dominant inelastic deformation mechanism that leads to recovery. The model accounts for the
presence of grain boundaries interacting via diffusion with voids that exist within the nanocrystalline metal thin films due to the
deposition process. A number of prior studies have observed that nanoscopic voids are commonly found in nanocrystalline materials
(Meyers et al., 2006; Kumar et al., 2003b; Petegem et al., 2003; Hugo et al., 2003). Most of these studies described different
deposition methods to fabricate nanocrystalline thin films, however the existence of voids can be justified for all thin films due to the
presence of contaminants during deposition in the absence of absolute vacuum, as well as the existence of defects in substrates and
impurities in substrate and thin film materials. Also, when film deposition proceeds via hit-and-stick mechanisms — such as the
evaporation and sputtering methods that we used to fabricate our experimental samples — voids can results from self-shadowing
effects during deposition. When the overall atomic mobility is low (specifically for sputtering where the substrate is low tempera-
ture), these voids can not be filled and remain in the thin films (Thornton and Hoffman, 1989; Koch, 2010). In addition voids can be
nucleated during loading because of pre-existing defects in grain boundary or can be created by dislocation emission from grain
boundaries (Kumar et al., 2003b; Meyers et al., 2006). Also the existence and growth of voids in nanocrystalline materials and its role
in deformation behaviour has been demonstrated in number of recent numerical simulations (Dongare et al., 2009; Rudd, 2009;
Bringa et al., 2010).

Our model allows for three possible irreversible deformation mechanisms: (1) diffusion along grain boundaries and along the
surface of voids; (2) grain boundary fracture; and, (3) plastic deformation within the nanocrystalline grains. Numerically, grain
boundary diffusion is modeled with a diffusion zone (DZ) model while potential fracture along grain boundaries is modeled by a
cohesive zone (CZ) model. Continuum plastic deformation is treated as being isotropic. We purposely do not include the possibility of
grain boundary sliding in order to test the hypothesis that grain boundary diffusion can be the dominant deformation mechanism
associated with plastic strain recovery.

We employ the finite element method (FEM) to implement our model and validate it against our previously published (Ghazi and
Kysar, 2016) experiments on plastic strain recovery in free-standing thin films of nanocrystalline copper. The diffusion zone (DZ) and
cohesive zone (CZ) deformation mechanisms and their constitutive relationships are implemented through a user element (UEL)
subroutine in the commercial finite element code ABAQUS. Our results are consistent with our previous experimental studies (Ghazi
and Kysar, 2016) and suggest that grain boundary diffusion in conjunction with voids within the nanocrystalline material can be the
dominant deformation mechanisms that lead to plastic strain recovery.

In what follows, Section 2 discusses previous experiments that characterize plastic strain recovery. Section 3 includes a de-
scription of the geometry of the specimen configuration investigated in this study as well as a description of the general computa-
tional methods used to model plastic strain recovery in the specimen. Section 4 describes the constitutive models used to model
cohesive zone and diffusion zone behavior on grain boundaries as well as the diffusion zone behavior on the void surface. Section 5
describes the implementation of the cohesive and diffusion zones in the context of the finite element method. Section 6 discusses the
development of the computational model from the cohesive zone and diffusion zone elements. Section 7 discusses the simulation
results obtained throughout a load cycle followed by a recovery period during which plastic strain recovery emerges naturally from
the simulation. Section 8 discusses the influence of model parameters on the simulation results. Section 9 summarizes results and
presents conclusions.
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2. Prior studies of plastic strain recovery

2.1. Prior experiments

The phenomenon of plastic strain recovery was first reported by (Rajagopalan et al., 2007) in nanocrystalline thin films of
aluminum and gold. The microscale specimens were loaded uniaxially at strain rates in the range of − −10 s4 1 to plastic strains of the
order of 0.65%. After load removal, the plastic strain was fully to partially recovered. The strain recovery rate increased with
temperature. Additional experiments by (WeiKysar, 2011) and (Ghazi and Kysar, 2016) characterized the response of free-standing
thin films of nanocrystalline copper loaded in plane strain deformation via a thin film bulge test to a total plastic strain of about 0.5%.
The results demonstrate that plastic strain recovery occurs in two phases. During the transient first phase, plastic strain recovery
occurs at a rate of about − −10 s7 1 for about ×2 10 s3 . During the steady-state second phase, plastic strain recovery rate decreases to
about − −10 s9 1 and maintains this rate until the specimen has recovered its original dimensions. The two characteristic plastic strain
rates as well as the time at which the transition occurs from one strain rate to another serve as important validation quantities.

2.2. Prior simulation models

Atomistic modeling (e.g. Molecular Dynamics) and continuum modeling (e.g. Finite Element Modeling) have been used to analyze
experimental observations in nanocrystalline materials. Each method has strengths and weaknesses. Atomistic simulations provide
descriptions of nanocrystalline deformation (Schiotz et al., 1998; Van Swygenhoven et al., 2002; Wolf et al., 2005; Swygenhoven
et al., 2006) characterized in terms of grain boundary-mediated and dislocation-mediated deformation modes (Swygenhoven and
Derlet, 2001; Swygenhoven et al., 2006; Swygenhoven and Weertman, 2006). The advantage of the atomistic method is that it
directly models the atoms and therefore incorporates the atomic length scales of the grain boundary into the computation. Individual
atoms interact through forces defined by potential functions. These potential functions are phenomenological approximations which
in principle may be derived from quantum mechanical simulations. The primary drawback of atomistic-scale analysis is the time scale
used in the simulations. In practice, the time step is a small fraction of the period of atomic vibration resulting in molecular dynamic
calculations occurring at extremely high strain rates that are inaccessible experimentally. Another limitation of atomistic models is
the accessible length scale. The largest sample that may be simulated typically on the order of only a few micrometers.

Finite element method (FEM) continuum simulations capture the mechanical response of nanocrystalline metals by modeling
plastic deformation within individual grains as well as deformation mechanisms associated with the grain-boundary. While finite
element methods have no limit for accessible length and time scales, the challenge is to model atomic scale phenomena at the
continuum level (Meyers et al., 2006; Fu et al., 2001). In our study we address this issue by using continuum concepts to model
atomic diffusion flux inside grain boundaries and over the void surfaces in the thin film while elastic-plastic deformation occurs
within the grains simultaneously.

A limited number of studies have modeled plastic strain recovery phenomena. Wei and Anand (Wei et al., 2006) model inelastic
deformation and failure in face-centered cubic (FCC) nanocrystalline metals using continuum modeling. In their model, grain
boundary elements follow evolution equations for normal and tangential tractions across grain boundaries, and the grain interior
follows single-crystal plasticity behavior. Their simulation results suggest a transition from “grain interior” to “grain boundary
shearing” deformation as grain sizes decrease from 50 nm to 10 nm. Wei and Gao (Wei et al., 2008a) propose a grain boundary-
mediated model with heterogeneous grain boundary diffusion and sliding able to reproduce plastic recovery observed in nano-
crystalline aluminum thin films. In this study, the grain interior is assumed to deform by anisotropic elasticity with each grain
boundary assigned either high or low values of diffusivity and sliding viscosity. Both these studies allow for grain boundary sliding. In
the present study, we demonstrate that plastic strain recovery can be modeled by appealing to grain boundary diffusion with no grain
boundary sliding. Importantly, our model captures the two characteristic plastic strain recovery rates as well as the transition be-
tween the two, which provides strong experimental validation.

3. Basic outline of mechanistic model

In our experimental setup (Ghazi and Kysar, 2016) a rectangular free-standing nanocrystalline copper thin film is deformed in

Fig. 1. Schematic of the sample representing the film in experimental condition.
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tension while maintaining a plane strain deformation state using a thin film bulge test (cf. Fig. 1). The film thickness is denoted by h,
the length of the deforming film is denoted by a2 , and the out-of-plane width is denoted by w. As air at a pressure, P, is applied
uniformly across the film the specimen deforms into a cylindrical shape. The ratio ≪h a/ 1 so the film can be treated as a membrane.
Furthermore the ratio >w a/ 4 so the deformation can be assumed to be plane strain (Vlassak and Nix, 1992; Xiang et al., 2006). To
model the experiment, we select a 2D cross-section of the sample (Fig. 1) and assume a state of pure tension under a plane strain
deformation state.

The thin metal film is treated as polycrystalline. For simplicity, all grains are considered to have similar shape and dimensions and
we employ periodic boundary conditions (PBC) so our model reduces to a single unit cell that contains two grains separated by a grain
boundary containing a single pre-existing void as shown in Fig. 2a. The void surface is approximated by two arcs with uniform radius,
denoted as R, truncated by the grain-boundary at their points of intersection. The x1-direction in Fig. 2a corresponds to the cir-
cumferential direction of the bulged specimen's mid-surface in Fig. 1. Similarly the x2-direction corresponds to the radial direction of
the bulged specimen, and the x3-direction is in the longitudinal direction perpendicular to Section A-A (Fig. 1).

To impose PBC, the displacement in Fig. 1 is constrained to be zero in x1-direction at edge 1 and in the x2-direction at edge 4, with
uniform displacement in the x1-direction on edge 3 and in the x2-direction on edge 2. All out-of-plane components of the strain tensor
are assumed to be identically zero due to the plane strain conditions of the experimental setup. A uniform tensile stress, ∞σ11 , is applied
in the x1-direction on edges 1 and 3. Since the pressure ≪ ∞P σ11 , we assume that edges 2 and 4 are free of tractions. The material
within the grains is assumed to undergo isotropic elastic-plastic deformation.

Our model demonstrates that grain boundary diffusion is able to explain both the transient and steady-state plastic strain recovery
rates. In contrast to earlier models for plastic strain recovery where heterogeneity in diffusion coefficient leads to atomic flux for
recovery (Wei et al., 2008a), our model assumes a constant diffusion coefficient over all grain boundaries. Diffusion is driven by
chemical potential gradients resulting from residual stresses and the presence of voids in the film.

To account for grain boundary diffusion, we incorporate a diffusion zone (DZ) associated with the grain boundary with initial
thickness chosen arbitrarily to be 1 nm; its thickness can vary as a consequence of diffusion flux. A cohesive zone (CZ) is also
associated with the grain boundary to account for potential traction-separation behavior. The system is assumed to be in mechanical
equilibrium before application of an external force. A force balance equilibrium therefore holds at the tip of the void, implying that
the surface tensions and grain boundary tension balance each another at the tip (Takahashi et al., 1991) such that

=γ γ cosψ2b s (1)

where γb denotes grain boundary energy per unit area, γs denotes surface energy per unit area, and ψ is the dihedral angle (cf. Fig. 2b).
These surface energies are defined to be equal to the energy required to separate the adjoining surfaces if displacements jumps are
normal to the grain boundary and surface and are prescribed to be ≈ =γ γ 0.5s b J/m2 (Harper et al., 1999). With these values the
dihedral angle at the tip is found to be

⎜ ⎟= ⎛
⎝

⎞
⎠

= ∘ψ
γ
γ

arccos
2

60 .b

s (2)

The relation between the radius of the void, R, the void half-length a, and the dihedral angle is

Fig. 2. a) Schematic of the model with periodic boundary conditions at edges 1 to 4 and pre-existing void between two grains, b) Dihedral angle ψ( )
at the tip of the void.
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=R a
sinψ

.
(3)

Our model implements both the cohesive zone and a diffusion zone as shown schematically in Fig. 3. The cohesive zone admits
deformation via traction-separation constitutive behavior of the grain boundary defined by a potential function. The diffusion zone
admits deformation by accounting for the driving forces of atomic diffusion over the grain boundary and void surface to determine
the direction and magnitude of atomic flux within the grain boundary. The diffusion mechanism continues after removal of external
stress from the sample which leads to a reversal of the direction of atomic flux, inducing plastic strain recovery.

4. Grain boundary and void constitutive models

4.1. Cohesive zone (CZ) modeling

Cohesive zone modeling is a common method for investigating fracture processes and decohesion at the prolongation of crack tips
and at other geometrical discontinuities in a material. This approach is widely used because it avoids singularities at a crack tip.
Cohesive zone modeling can be implemented in numerical analysis in the finite element method and the boundary element method
(Prandtl, 1933; Barenblatt, 1959; Dugdale, 1960; Shet and Chandra, 2002). Hillerborg and later Needleman were the first to apply
cohesive surface models to simulate fracture initiation and growth in the metal in the context of FEM (Peterson et al., 1976;
Needleman, 1987, 1990). Later, Xu and Needleman proposed a cohesive zone model for both normal and tangential fracture modes
(Xu and Needleman, 1993).

To model cohesive zones with the finite element method, a pair of cohesive surfaces is discretized using interface elements. These
elements incorporate a nonlinear traction–separation law that constitutes the relationship between the opening separation and the
cohesive zone traction at equilibrium with the stress fields of the surrounding body (cf. Fig. 4a). The relationship between traction
and separation is obtained from the derivative of the potential function whose integral represents the fracture energy (Wei and
Anand, 2004; Needleman, 1987). By increasing the interfacial separation to a critical value, δc, the traction across the interface
increases to a maximum value, Tmax , after which further increase in the separation between surfaces leads to a decrease in traction.
After sufficiently large separation, the traction between surface layers vanishes resulting in complete decohesion (Needleman, 1987).
The maximum traction represents the material strength (Fig. 4b), with initial slope related to the elastic stiffness of the surrounding
material.

In this work we use the Park–Paulino–Roesler (PPR) potential function (Park et al., 2009). This potential function characterizes
different modes of fracture energies with varying cohesive strengths, and also describes various material softening behaviors that
represent a wide range of failure responses. The PPR potential function is defined as

⎜ ⎟= + ⎡
⎣

⎛
⎝

− ⎞
⎠

⎛
⎝

+ ⎞
⎠

+ < − >⎤
⎦

× ⎡
⎣
⎢ ⎛

⎝
− ⎞

⎠
⎛
⎝

+ ⎞
⎠

+ < − >⎤
⎦
⎥n t min ϕ ϕ n

δn
m
α

n
δn

ϕ ϕ t
δt

n
β

t
δt

ϕ ϕΨ(Δ , Δ ) ( , ) Γ 1 Δ Δ Γ 1 Δ Δ
n t n

α m

n t t

β n

t n
(4)

where < >. is the Macauley bracket, i.e.

Fig. 3. Cohesive (green line) and diffusion (red line) zones over the grain boundary and pre-existing void. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this article.)
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and where the parameters are defined based on expected material behavior in the regions of grain boundary and void tip. Table 1
defines each parameter in Eq. (4).

The first derivative of the potential with respect to crack openings provides tractions over the cohesive surface. In the case of the
PPR potential
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whereTn is normal traction andTt is tangential traction. The values for the parameters in Table 1 are calculated using copper's atomic
and macroscopic properties (cf. Table 2).

Fig. 5 shows the normal traction-separation relation curve obtained by applying the parameters to the cohesive zone relations in
Eq. (5) and Eq. (6).

4.2. Diffusion Zone (DZ) modeling

The concept of chemical potential (Gibbs, 1902) is defined as the increase in free energy when an individual atom is added into a
system while the surface remains homogenous before and after adding the atom. Using the Gibbs energy definition, the chemical
potential along the grain boundary is denoted as μb and given as (Herring and Kingston, 1951)

= −μ μ σΩgb n0 (7)

where σn denotes normal traction at position s on the grain boundary, Ω is atomic volume, and μ0 is a reference potential in the stress-

Fig. 4. General cohesive zone behavior: a) Two surfaces separating; b) Traction vs. Separation relationship.

Table 1
Cohesive zone parameters in the potential function based on PPR model.

ϕ ϕ,n t Mode I and Mode II fracture energy
Γ , Γn t Energy constants
m n, Nondimensional exponents
Δ , Δn t Normal and Tangential Crack openings
δ δ,n t Final crack openings
δ δ,nc tc Critical crack openings
α β, Shape parameters
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free state.
Atomic diffusion in the grain boundary is driven by the gradient of a non-uniform chemical potential along the boundaries. It is

defined as the number of atoms per second which passes the grain boundary cross-section. The Nernst-Einstein equation for the
atomic flux jb is (Thouless, 1993)

= −
∂

∂
= ⎛

⎝
∂
∂

⎞
⎠

j
δ D
kT

μ

s
δ D

kT
σ
sΩgb

gb gb gb gb gb n

(8)

where Dgb denotes the grain boundary diffusivity, δgb is the grain boundary thickness, k is the Boltzmann constant, T is temperature,
and s is position along the grain boundary.

Conservation of mass at the grain boundary requires that the rate of material accumulation at any point on the grain boundary is
directly related to divergence of the atomic flux over the same point (cf. Fig. (6)), expressed as

Table 2
Values of parameters employed in PPR potential function.

α β, 5,5
δ δ,nc tc × −8 10 7mm

,δnc
δn

δtc
δn

,1
3

1
3

ψgrain boundary 0.5 J/m2(Harper et al., 1999)

ψvoid surface 0.5 J/m2(Harper et al., 1999)

Fig. 5. Traction-Separation relation curve obtained using the values for variable in Table 2.

Fig. 6. Atomic diffusion flux in grain boundary shown as jgb and hi represents the initial thickness of the grain boundary whereas hΔ b represents the
change in grain boundary thickness.
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where hΔ b represents normal displacement along the grain boundary.

4.3. Constitutive model for diffusion on void surface

Surface diffusion is also driven by the variation in chemical potential along a free surface causing atoms to migrate from regions of
high chemical potential to regions of low chemical potential. There are two contributions to the chemical potential (μ )s from an atom
on a free surface. The first is due to the surface free energy, γs, while the second is due to the elastic strain energy stored in the volume
of material associated with an atom (LcBower et al., 1997). Thus the chemical potential on a free surface can be written

= + −μ μ ϕ γ κΩ( )s s0 (10)

where =ϕ σ εij ij
1
2 is the elastic strain energy density (assuming a linear elastic material) and κ is the curvature of the surface. The sign

convention for κ is that a concave surface has positive curvature and a convex surface has negative curvature. We assume that the rate
of mass transport is proportional to the gradient in chemical potential. Therefore, the total flux on a void surface may be expressed as
(Thouless, 1993)

D ⎜ ⎟= − ⎛
⎝

∂
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⎞
⎠

j
μ
ss s

s

(11)

where s denotes the position measured from a convenient point on the void surface, and js is the volume of material that crosses a line
of unit length perpendicular to the void's plane per unit time. The quantity ∂ ∂μ ss/ denotes the gradient in chemical potential along the
void surface, and Ds is a temperature dependent constant or proportionality related to the coefficient of surface diffusion (LcBower
et al., 1997) by

D = −D δ
kT

es
s s Q

kT
s

(12)

where the quantity −D es
Q kT/s is the surface diffusion coefficient, δs is the thickness of the diffusion layer calculated as the cubic root of

the volume of the diffusive atom, and Qs is the activation energy for surface diffusion.
The rate at which material is deposited on or removed from an element is related to the divergence of the surface flux by mass

conservation. The normal velocity of the surface of the void in the reference configuration is

= −
∂
∂

υ
j
s

.n
s

(13)

Upon rewriting Eq. (11) and Eq. (13) using Eq. (10) there results
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Deformation induced by the mechanical loading can be described by the displacement field u x( )i j of the material points from the
stress free configuration of the solid. The deformation may be characterized by the infinitesimal strain

= +ε u u1
2

( )ij i j j i, , (16)

where the comma denotes partial differentiation with respect to the spatial coordinate. We assume that the solid deforms in the state
of plane strain, with displacement components =u u x x( , )1 1 1 2 , =u u x x( , )2 2 1 2 and =u x x( , ) 03 1 2 .

There is a discrete change in the magnitude of chemical potential at the point where the grain boundary meets the void surface.
We refer to this position as the void tip and model the diffusion flux there as

= − −J C μ μ( )void tip s gb (17)

where C is a constant. A positive value of Jvoid tip represents the atomic flux from grain boundary to the grain boundary at the void tip.

5. Finite element implementation

We implemented the cohesive zone and diffusion zone as a User Element Subroutine (UEL) using Abaqus/Standard, which is a
commercial finite element platform. Abaqus/Standard uses the Newton-Raphson method to model nonlinear equilibrium equations
(Dassault Systèmes and Provid, 2013) based on the idea of linear approximation. This method is a rapidly converging process for
solutions to problems where only one evaluation of the function is made at a time (Zienkiewicz and Taylor, 2005; Stroud, 2003).
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We first define the stiffness and residual matrix for each type of element. Using the Newton-Raphson method, the nonlinear
relation between the field variables in the vector element u (element opening displacement for cohesive zone element and atomic flux
for diffusion zone element) and external force f (traction for cohesive zone element and chemical potential for diffusion zone
element) is defined as

× =K u u f( ) (18)

where K u( ) is defined to be the stiffness matrix. For a nonlinear equation, the residual vector r u( ) is defined as

= × −Kr u u u f( ) ( ) (19)

The basic formulation used to find the iterative correction for Newton's method is obtained as follows (Zienkiewicz and Taylor,
2005)

=
= −

△ = − → △ = −
= + △

+

−

+

K
T T

u u
r u u f

u u r u u r
u u u

(1)
(2) ( )
(3) ( ). ( ).( )
(4) .

k k

k k k

k k k k k

k k k

k

1

1

1 (20)

5.1. Weak form and discretization for cohesive zone element

To discretize the domain inside the grain, a standard plane strain 8-node bi-quadratic element from the Abaqus element library
(CPE8R) is chosen (Fig. 7a). The cohesive zone element between two grains is shown in Fig. 7b and Fig. (8). These elements are
defined by a 6-node one-dimensional element integrated using three Gauss points. The shape function for the element is defined to be
quadratic Lagrangian, preserving continuity of the field variable but not of its derivatives (C0). The field variables for the cohesive

Fig. 7. Method to combine Cohesive Zone (CZ) element and Diffusion Zone (DZ) element between plane strain elements: a) Combination of elements
in the model; b) Element inside the grain; c) Cohesive zone element; d) Diffusion zone element.

Fig. 8. Local coordinate systems: a) Cohesive zone element and nodes; b) diffusion zone element and nodes.
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zone are defined as u1 and u2 in local x1- andx2-directions, respectively.
The projection of the displacement components in normal and tangential direction to the grain boundary is obtained as

∑=
×

=

u n Q U
(2 6)

( )n

k
i ik k

1 (21)

∑=
×

=

u t Q U
(2 6)

( )t

k
i ik k

1 (22)

where ni is the normal vector to the cohesive interface and Uk is the displacement vector at element nodes. The matrix Q which
represents the sequence of shape functions at different points of the element is defined as (Fish and Belytschko, 2007)

= ⎡
⎣⎢

− − −
− − −

⎤
⎦⎥

Q
S S S S S S

S S S S S S
0 0 0 0 0 0

0 0 0 0 0 0 .1 2 3 1 2 3

1 2 3 1 2 3 (23)

The shape functions are defined as

= −S ξ ξ1
2

( )1
2

= +S ξ ξ1
2

( )2
2

= −S ξ13
2

where ξ is a normalized coordinate in the direction of the element (Fig. 8-a).
To include the effect of cohesive energy on a surface, a term reflecting this energy should be embedded into the constitutive

potential function of the system. When adjacent nodes in an element move relative to each other, this movement causes the element
to open normally or tangentially. The virtual work of this process is

∫ +T δu T δu ds( )
s

n n t t
(24)

which represents the cohesive surface energy. This term considers the effect of normal (Tn) and tangential (Tt) traction on the
corresponding cohesive surface.

Tn and Tt are rearranged by defining cohesive stiffness terms an and at as

= = ×T T n t a n t n(Δ , Δ ) (Δ , Δ ) Δn n n (25)

= = ×T T n t a n t t(Δ , Δ ) (Δ , Δ ) Δt t t (26)

where = − −n u h hΔ ( ( ))n
o , = −t u uΔ ( )t s , h is the current grain boundary thickness, h0 is the initial grain boundary thickness, and

us is the relative displacement across the grain boundary. By substituting Tn and Tt into the Eq. (24), the contribution of the cohesive
zone element to the principle virtual work is obtained as

∫ ∫+ − − +a u δu a u δu ds a h h δu a u δu ds( ) ( ( ) ) .n n n t t t n n t s t
0 (27)

Using the discretized form of un and ut from Eq. (53) and Eq. (22) we can rewrite Eq. (53) as

∫ ∫+ − − +a n Q U n Q δU a t Q U t Q δU ds a h h n Q δU a t Q δU ds( ( ) ( ) ( ) ( ) ) ( ( )( ) ( ) )n
i iL L j jK K

t
i iL L j jK K

n
j jK K

t
j jK K0 (28)

where summation over the lower indices K and L is implied. Thus Eq. (28) has the final form

−K U fKL L K (29)

where the matrix K and the vector f are

∫= +K a n Q n Q a t Q t Q ds[ ( )( ) ( )( )]KL
n

j jK I IL
t

j jK I IL (30)

∫= − +f a n Q h h a t Q u ds[ ( )( ) ( )( )] .k
n

j jk
t

j jk
s

0 (31)

The tangential stiffness matrix T( ) is obtained by using the Newton-Raphson definition as

∑= + ∂
∂

−
∂
∂

T K K
U

U
f
Ukl kl

km

l
m

k

l (32)

where K and f are found from Eqs. (30) and (31). As described in detail in the Appendix 1, upon calculating all terms in Eq. (32) the
stiffness matrix can be expressed as

∫ ⎜ ⎟= ⎛
⎝

+ ⎛
⎝

∂
∂

− − ⎞
⎠

+ ⎛
⎝

∂
∂

− − ⎞
⎠

⎞
⎠

+T n Q a n Q a
u

n Q u h h a
u

t Q u h h ds t Q( ) ( ) ( ( )) ( ( )) ( )kl j jk
n

I IL
n

n I IL
n

n

n I IL
n

j jk0 0
(33)
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∫
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where
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Additionally, the residual can be expressed as

∫
∫
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5.2. Weak form and discretization of grain boundary diffusion zone element

To find the stiffness matrix for the diffusion flux it is necessary to define the weak form of Eq. 8

D∫ ⎛
⎝

− ∂
∂

⎞
⎠

=j h σ
s

δj ds 0
S gb gb

n

gb
Γ (36)

where δjgb is a “kinematically” admissible atomic flux-field, h represents diffusion zone thickness, δgb, therefore

D∫ ∫= ⎛
⎝

∂
∂

⎞
⎠

j δj ds h σ
s

δj ds.
S gb gb S gb

n

gb
Γ Γ (37)

The detail for all steps of calculation is described in Appendix 2. Eq. (37) acan be expressed respectively as

D D

D D D

∫

∫

⎜ ⎜ ⎟
⎛

⎝
⎜

⎛
⎝

− ∂
∂

∂
∂

⎛
⎝

⎞
⎠

− ∂
∂

⎛
⎝

⎞
⎠

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎞

⎠
⎟

= − ∂
∂

+ ∂
∂

+
−
+

δj S S α σ tδj S
ζ

S
ζ l

α σ tδj S S
ζ l

dζ l j

σ h δj S
ζ

dζ σ h
ζ

δj S h σ S δj

Ω Δ 2 Ω Δ 2
2

Ω Ω [ ( )]

S gb k kl mn gb
n

gb k
kl mn

gb
n

gb k kl
mn

gb n

gb
n

gb k
kl

gb
n

gb k kl gb
n

kl gb k

( ) ( )

2

( )

2

2

2

( )

0 ( )
0

( ) ( )

Γ

(38)

where σn is calculated from the cohesive traction-separation equation inside the grain boundary. Over each element, σn is determined
as a function of traction on each element's node using linear shape function S

∑=
=

σ S σ .n

K
K K

1

3

Since the shape function is linear, the second derivative in Eq. (38) is zero, =∂
∂

0S
ζ

2
2 . By implementing the summation in the Eq.

(38), the finite element form of the equation is obtained as

=K j Fkn gb n n( ) (39)

where
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and
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5.3. Weak form and discretization of void surface diffusion zone element

The flux on the void surface js is calculated by enforcing Eq. (14) in its weak form

D D D∫ ∫ ∫= − ⎛
⎝

∂
∂

− ∂
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⎞
⎠

= −
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− − −
+j δj ds

ϕ
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γ κ
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δj ds ϕ γ κ
δj
s

ds ϕ γ κ δj( ) [ ( )( )]s s s s s s s
s

s s sΓ Γ Γ (41)

where normal velocity over the surface, υn, is then determined as the gradient of the surface diffusion flux.
To obtain the finite element equation from the discretized form, the linear Gaussian shape function is defined over the diffusion

zone element of the void surface as
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=K J Fkn n n (43)
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The calculations is described in detail in Appendix 3.

6. Model development

6.1. Length scale limitations

The size effect for parameters in the constitutive equations of the cohesive zone and diffusion affect the final result of the
simulation. It is therefore necessary to consider the length scales for each parameters. The most important parameters includes grain
size, b, mesh size, and cohesive zone decohesion length. In this work, the Griffith model is used as a standard model that incorporates
all of these parameters as a means to determine necessary relationships between length scales in the problem.

The stress intensity factor associated with periodically spaced Griffith cracks is (Kanninen and Popelar, 1985)

= ⎡
⎣

⎛
⎝

⎞
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⎤
⎦

∞K σ πa b
πa

tan πa
b

( ) 2
2I

1
2

1
2

(45)

where ∞σ denotes the far-field stress and a2 and b are the length of the void and the grain, respectively (cf. 9). While the Griffith
cracks have a higher stress concentration than the voids used in the problem, they provide a lower bound on the stress, ∞σ , required
to achieve grain boundary fracture. The plane strain Griffith model relates Young's modulus, E, Poisson ratio, ν, surface free energy,
γs, and energy release rate, G, as (Kanninen and Popelar, 1985)

= −
G

ν
E

K
(1 )

I

2
2

(46)

where in the absence of inelastic deformation the grain boundary fracture criterion is =G γ2 s (where we neglect the grain boundary
free energy). The values for these material properties in our simulation using copper are =G [1] J/m2, =E [150] GPa and =ν 0.3
(Harper et al., 1999) whereby =K [0.406] MPa mI . The minimum fair-field stress that could induce grain boundary fracture is

= ⎡
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(47)

The magnitude of the lower bound on far-field stress from Eq. (47) can be compared to the far-field stress obtained from si-
mulations of different length parameters to explore the size effect.

In the finite element analysis of the cohesive zone, determining the appropriate mesh size is a critical issue related to the accuracy
and computational efficiency. To find an adequate mesh size bound, we checked for mesh dependency of the Griffith model. We then
validate the far-field stress obtained from the simulation by comparing them to Eq. (47) for different ratios of mesh size to critical
opening at cohesive traction-separation relation, l δ/m cr and mesh size to the geometrical size of the model l b/m (Fig. 9), where lm
denotes mesh size, and δcr denotes critical opening.

The other important parameter is the decohesion length of the cohesive zone, lz, defined as
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where γ2 s denotes the energy release rate and σmax is the maximum traction in the cohesive zone (Falk et al., 2001). From Eq. (48) we
find that the length of the cohesive zone is proportional to the inverse square of the maximum traction ∝l σ1/z max

2 .
We performed several simulations with different ranges of δcr , lm, and lz and compared the far-field stress from the simulation with

its value calculated from Eq. (45). By comparing the results from the Griffith model, we conclude that:

• The critical opening should be much smaller than the mesh size, lm at the crack tip. The adequate range obtained is: < <δ
l

1
100

1
1000

c
m

• The mesh length at the crack tip should be significantly smaller than the cohesive zone length, such that ≪l lm z.

• The cohesive zone length should be smaller than the specimen length, such that <l bz .

Considering all of these conditions together, we have

≪ ≪ <δ
l

l
l

b
l

1 .cr

m

z

m m (49)

In this work we maintain all parameters within the suggested range by Eq. (49). One of the challenges in modeling the experiment
is to maintain intrinsic length scales such as grain size at the same length order as in the experimental sample.

The energy under the traction-separation curve for the cohesive zone is obtained based on the surface energy of copper, 1 J/m2. To
keep the value of energy constant, when increasing σmax the critical opening, δc, must be decreased (cf. Fig. 10). However, δc phy-
sically needs to be the same order as the thickness of the diffusion zone of a grain boundary which we assume to be =δ 1 nmgb (Wei
and Anand, 2004; Péron-Lührs et al., 2013). Considering these inequalities and employing the parameters in Eq. (48), while taking

=δ 0.8 nmcr and =σ 500 MPamax , we find a cohesive zone length of =l 500 nmz . According to Eq. (49), we require that ≤l bz , so
≥b 500 nm. Because the value of b is at least 20 times larger than the experimental value, we consider =b μm2.5 for the simulation

to satisfy Eq. (49).
The parameters used in this study are set to nondimensionalization groupings shown in Table 3.

6.2. Schematic of the model and elements

The 2D model consist of two rectangular grains with periodic boundary conditions (PBC) shown in Fig. 11a. The grains are
considered to be the same size and are separated by a grain boundary. Diffusion within the grain boundary occurs inside a “diffusion

Fig. 9. Collinear crack with periodic boundary conditions.

Fig. 10. Change in Tmax by changing δcr at constant energy.
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zone.” A pre-existing void is assumed to be in the middle of the grain boundary. The deformation mechanisms are assumed to be
isotropic linear elastic-plastic deformation within the grains, diffusion within the grain boundary, and the possibility of decohesion
along the grain boundary. Periodic boundary conditions are applied on the edges of the grain (cf. Fig. 11a).

The 2D model is meshed inside the grains and along the grain boundary. The mesh size is refined in the vicinity of the void tip for
both grains and grain boundaries (Fig. 12). According to length scale arguments discussed in Section 6.1, the value for the smallest
mesh length is defined to be at about one order of magnitude larger than the value for the critical-opening of grain boundary, δcr . The
value is refined to about 3 nm for the mesh at the void tip in the gain boundary. We increased the mesh size with about an order and
did not find significant change in the results, which shows that the results are not mesh sensitive. The critical opening is determined
by defining the potential function for the cohesive zone. The elements used within the grains are 8-node biquadratic plane strain
elements (CPE8R) selected from the ABAQUS element library. The cohesive zone elements of the grain boundary are defined by six-
nodes in one-dimensional elements. The shape function is prescribed by a quadratic polynomial equation over each element. The
diffusion zone is meshed by defining two-node linear elements.

The constitutive equations used to model the cohesive zone and diffusion inside the grain boundary are implemented in com-
mercial finite element analysis (FEA) software ABAQUS® using a user defined subroutine (UEL) based on Eq. (38) and Eq. (42).

An external force is applied on the right side of the model (Fig. 13) which induces a uniform displacement imposed in the
x1-direction for all nodes at the edge. Fig. 11b shows the applied load versus time in the experiment. The load gradually increases
from zero to its maximum over a period of time t1. The value of t1 is adjusted to match the experimentally applied strain-rate. The
value for the maximum external load also matches the experiments. The dwell time is defined from t1 to t2 when the external load is

Table 3
Nondimensionalization of the material parameters.

Parameter Value Nondimensionalized Parameter Value

Critical opening = × −δ 8 10 mmcr 7 = =δ 1cr
δcr
δcr

Initial grain boundary thickness = × −h 1 10 mmgb 6
= =h 1.25gb

hgb
δcr

GB diffusion coefficient
D =

−
3200gb

10 3s
Kg

D
D

D
= = 1gb

gb

gb

Surface diffusion coefficient
D = × − −

2.8 10s 6 10 3s.mm
Kg

D
D

D
= = =× × −

× × − 0.0225s
s

gbδcr
5 2.3 10 10

0.64 8 10 7

Normal Traction (MPa) = −T 0 700 MPan = = −T 0 1n
Tn
Tcr

Time step tΔ (s) D= = × −t h T t tΔ Δ 4.48 10 Δi gb max 4

Atomic diffusion flux for GB jgb(mm−1s−1)
D

= = × −j h j2.66 10gb
Jgb

Tmax gb
igb gb

3

Atomic diffusion flux for surface js(mm−1s−1)
D

= = × −j h j2.66 10s
Js

Tmax gb
igb s

3

Length scale = × − ×− −ds 2.97 10 8.96 10 mm6 5 = = −ds 2.97 89.6ds
higb

Atomic volume = × −Ω 1.18 10 20 mm3
= =Ω 0.023

higb

Ω
3

Curvature of void ∼κ 1450mm−1 = × = × × −κ κ δ κ 8 10cr 7

Surface energy γ (N/m)s = =γ 1.78s
γs

δcr Tmax

Chemical potential of GB μ (10gb
3Kgmm2s−2) = = ×μ μgb

μgb
Tmax hi

gb3
1018

700

Chemical potential of surface μ (10s
3Kgmm2s−2) = = ×μ μs

μs
Tmax hi

s3
1018

700

Fig. 11. a) Schematic of the model used in simulation; b) External load applied to the model system.
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kept constant. The external load is then gradually released from its maximum to zero from time t2 to t3. From t3 to t4 there are no
external forces on the sample.

Plastic strain recovery begins after the unloading part of the load cycle, but most of the strain recovery occurs while no external
loads are applied to the virtual sample. Plastic strain recovery rate as a function of time is calculated by comparing the instantaneous
thin film length at any time after >t t3 to the length of the film immediately after unloading at =t t3.

Fig. 12. Schematic of the mesh of the model. Purple lines represent the cohesive zone region and blue lines show diffusion zone region. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 13. Elastic-plastic behavior for nanocrystalline copper applied in the simulation: a) 100 GPa hardening rate, b) 50 GPa hardening rate.
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6.3. Element properties

6.3.1. Material properties of the grain
The material properties inside the grain are defined to be elastic-plastic with Young Modulus, E, of bulk copper of 135 GPa (Wei

et al., 2007) and the Poisson ratio is taken to be =ν 0.35 (ASM International, 1990). The conventional plastic deformation me-
chanisms inside the grains for nanocrystalline materials are constrained compared to in coarse grain materials, resulting in higher
yield stress in nanocrystalline materials. In our model, yield stress is assumed to be 550 MPa (Yilmaz and Kysar, 2013) which is higher
than the yield stress for microcrystalline copper (about 300 MPa (Xiang et al., 2006)). Plastic deformation is limited only to the
regions close to the void tip where there is local stress concentration. Fig. 13 shows two sets of elastic-plastic behavior employed in
this study.

6.3.2. Cohesive zone in grain boundary
We define eight characteristic parameters, specifically Γn, Γt, m, n, δn, δt , α, and β to prescribe the parameters for the PPR potential

function for the cohesive zone. All other parameters in the cohesive zone can be related to these eight parameters. The list of
parameters and their values used in this work are shown in Table 4. The critical opening, δc, is defined to be in the same order as grain
boundary thickness of 1 nm (Wei and Anand, 2004; Péron-Lührs et al., 2013). Additionally, the maximum strength, σmax, is prescribed
to be slightly higher than the yield stress of the copper to ensure plastic deformation can be induced in the grains.

6.3.3. Diffusion in grain boundary
The parameters for the diffusion zone (DZ) within the grain boundary are listed in Table 5. The value for the grain boundary

diffusivity of copper is = × −δ D 8.36 10 m /sgb gb
30 3 where =δ 1 nmgb is the thickness of the diffusion zone in the grain boundary as

obtained from our creep test (Ghazi and Kysar, 2016). This value is in good agreement with the grain boundary diffusion for
nanocrystalline materials (Wei et al., 2008b) and is about four orders of magnitude higher than the grain boundary diffusion for
microcrystalline copper (Thouless, 1993). The temperature is assumed to be ambient.

6.4. Grain boundary behavior at void tip

Simulation results for normal traction, diffusion flux, incremental change in grain boundary thickness, and total change in grain
boundary thickness are shown at different time steps (cf. Fig. 14). These parameters are explored in the grain boundary region close
to the void tip. This region includes only about 2% of the grain boundary length denoted as L. The diffusion flux, j, on grain boundary
is defined to be positive in the direction shown in Fig. 14. The direction of flux at the void tip depends on the difference between
surface and grain boundary chemical potentials. The change in chemical potential of the surface depends upon curvature (Eq. (11)).

Table 4
PPR cohesive zone parameters employed in this study.

Normal critical displacement δnc 0.85 nm

Tangential critical displacement δtc 0.85 nm
Initial Normal slope indicator λn 1

3
Initial Tangential slope indicator λt 1

3
Initial grain boundary thickness h0 1 nm
Mode I fracture energy ϕn 1J/m2

Mode II fracture energy ϕt 1J/m2

Shape parameter in the PPR model α 5
Shape parameter in the PPR model β 5
Normal characteristic length scale =δ λ δn n nc 2.25 nm
Tangential characteristic length scale =δ λ δt t tc 2.25 nm
Max Normal Stress Parameter σmax 835 MPa
Max Shear Stress Parameter τmax 835 MPa
Non-dimensional exponent in the PPR model m 4.7816
Non-dimensional exponent in the PPR model n 4.7816

Table 5
Values for parameters related to inelastic deformation mechanisms.

case 1 case 2 case 3 case 4 case 5 case 6

Diffusion Coefficient (mm 2/s) −10 14 −10 16 −10 14 −10 14 −10 14 −10 14

Diffusion constant at void tip (s/(103 Kgmm3) 1 1 5 1 1 1
Plasticity hardness (GPa) =h 100. =h 100 =h 100 =h 50 =h 100 =h 100
Void value fraction 0.27% 0.27% 0.27% 0.27% 2.4% 0.27%
Strain rate for loading (1/s) −10 5 −10 5 −10 5 −10 5 −10 5 −10 4
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The rate of change in curvature is negligible in this work and therefore the surface chemical potential is considered constant, so the
flux at the void tip is mainly governed by change in chemical potential of the grain boundary and directly affected by normal traction
on the grain boundary close to the void tip.

7. Simulation of load cycle and recovery

7.1. Loading phase

The simulation results on a portion of the grain boundary very close to the void tip, where the void tip is at position L along the
grain boundary are illustrated in Fig. 15. Results are shown at three simulation times: the beginning of loading ( =t 0), the middle of
loading ( =t t /2)1 , and the end of loading ( =t t )1 . In Fig. 15a, the normal traction in grain boundary at =t 0 is zero everywhere on the
grain boundary. At =t t /21 there is a significant stress concentration near the void tip inducing a positive gradient of traction along
the boundary. At =t t1 the peak normal traction is equal to σmax at about L0.996 and normal traction decreases as the void tip is
approached. This finding indicates that the deformation state in the grain boundary between the point of peak normal traction and
the void tip is such that the cohesive zone separation exceeds the critical cohesive zone separation, δcr , and results in normal traction
decrease (cf. Fig. 10).

Fig. 15b shows the direction and magnitude of diffusion flux for the nodes close to the void tip. At =t 0 there is no diffusive flux
since the traction gradient is zero. At =t t /21 the flux is positive which indicates a net mass flux along the grain boundary toward the

Fig. 14. Grain boundary region close to the void tip (L is length of the grain).

Fig. 15. Simulation results close to the void tip as a result of external loading from =t 0 to =t t (1001 s): a) Normal traction over grain boundary close
to the void tip; b) Diffusion flux along grain boundary; c) Incremental change in grain boundary thickness due to diffusion; d) Total change in grain
boundary thickness.
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void tip. At =t t1 the mass flux is negative between L0.996 and the void tip and otherwise positive indicating a net mass flux away
from the void tip between L0.996 and the void tip. Fig. 15b exhibits sharp changes in slope at =t t /21 and =t t1 very near the void tip
due to mass flux from the void surface to the grain boundary which contributes a negative flux in that region (Fig. 20). This flux is
caused by the difference between the chemical potential of the void surface and grain boundary described in Eq. (17). We note that, at
the beginning of the loading step, to avoid singularity caused by the flux jump between the grain boundary and the surface at the void
tip, we prescribed C to be very small and gradually increased it to its final value C. The results were not sensitive to how we activated
and subsequently increased the void tip flux condition.

Fig. 15c, and d shows the change in thickness in the current time step and the overall thickness of the diffusion zone, respectively,
along the grain boundary. At =t t1 in Fig. 15d the thickness of the diffusion zone increases significantly due to a combination of grain
boundary flux toward the tip as well as flux from the void surface to the near-tip grain boundary region. The accumulation of mass in
this region plays an important mechanistic role in the phenomenon of plastic strain recovery.

7.2. Load dwell phase

Fig. 16a, b, and c show behavior during the dwell time from ≤ ≤t t t1 2 when the external force is kept constant. We see that the
grain boundary traction and the flux change very little during the load dwell. However since the gradient of diffusion remains
negative, the accumulation of mass in the near void tip region continues unabated which leads to an increase in the diffusion zone
thickness (Fig. 16-d) and ultimately increases the diffusion zone thickness by up to 3%.

7.3. Unloading phase

During the unloading phase the external load decreases linearly over time to a zero external load from =t 200 s2 to =t 300 s3 .
Fig. 17a shows the normal traction on the grain boundary at three time steps during unloading. At the end of the unloading phase, the
material is not under any external stress, but the simulation results show that a compressive residual traction has developed along the
grain boundary at the void tip. The additional mass that diffused into the near void tip region during the loading and dwell phases
causes this increase in diffusion zone width. Upon unloading, the presence of the additional mass in the near tip region induces a
compressive traction on the grain boundary. The direction of net diffusion flux in the near void tip region changes as a result of the
compressive traction (Fig. 17b). Because of this directional change, the diffusion zone thickness decreases slightly during the un-
loading phase (cf. Fig. 17).

Fig. 16. Dwell period of constant external force from t1(100 s) to t2(200 s): a) Normal Traction over grain boundary close to the void tip; b) Diffusion
flux over grain boundary close to the void tip; c) Incremental change in grain boundary thickness due to diffusion over grain boundary close to the
void tip; and, d) Total change in grain boundary thickness due to diffusion over grain boundary close to the void tip.
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7.4. Recovery phase

Diffusion flux along the grain boundary continues after the external load is removed due to the compressive traction on the grain
boundary near the void tip as well as the jump in chemical potential from the grain boundary to the void surface. Fig. 18 and Fig. 19
present the normal traction, the diffusion flux, and the change in diffusion zone thickness from t3 to t4 for two different void ratios of
0.27% and 2.4%, respectively. For both ratios the trend is the same: atoms accumulated near the void tip of the grain boundary
during the loading, dwelling, and unloading steps diffuse back to the void surface and also away from the near void tip region of the
grain boundary (Fig. 20).

At = =t t 300 s3 the positive sign of diffusion flux at the void tip in Fig. 18-b and 19-b indicates that the direction of flux is from
the grain boundary to the void surface. Further to the left in the same figures the sign for flux is negative. Both fluxes reduce the
thickness of the diffusion zone near the void tip as can be seen in Fig. 18-d and Fig. 19-d. At a critical time of ≈t 400 s, the diffusion
zone has recovered its initial thickness after which very little diffusion flux is driven away from the near void tip toward the left.
Subsequent flux away from the near void tip region is driven by the jump in chemical potential from the grain boundary region to the
void surface in order to fill up the void. However since the change in the void size compared to its initial dimension is negligible, the
void ratio is considered to be constant during recovery. This flux is sufficient to decrease the thickness of the diffusion zone until there
is a tensile stress in the near void tip region.

The experiments demonstrate both transient as well as a steady-state plastic strain recovery rates. Our computational results
suggest that the faster transient plastic strain recovery rate is due to the combination of flux away from the near void tip region along
the grain boundary as well as toward the void surface. The transition from transient plastic strain recovery rate to the slower steady
state plastic strain recovery rate occurs when the diffusion zone thickness has recovered its initial thickness (at ≈t 400 s in the
simulations). Afterwards the only flux away from the near void tip region is to the void surface which explains why the steady-state
plastic strain recovery rate is slower than the transient rate. During the transient process, the diffusion is driven by a combination of
compressive normal stress and the jump in chemical potential from the grain boundary to the void surface resulting in “fast” strain
recovery rates. As time progresses, the compressive stress decreases which leads to a reduction in plastic strain recovery.

8. Influence of different parameters

We performed a series of simulations to explore the effect of the following parameters on plastic strain recovery rate:

Fig. 17. Unloading external force from t2 (200 s) to t3 (300 s): a) Normal Traction over grain boundary close to the void tip; b) Diffusion flux over
grain boundary close to the void tip; c) Incremental change in grain boundary thickness due to diffusion over grain boundary close to the void tip;
and, d) Total change in grain boundary thickness due to diffusion over grain boundary close to the void tip.
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• Diffusion coefficient of the grain boundary: Dgb

• Plasticity hardening rate inside the grains (cf. Fig. 13)

• Volume fraction of pre-existing void

• Strain rate during loading

• Diffusion coefficient between the grain boundary and surface at the void tip C.

The values for these parameters are shown in Table 5.
Simulations are performed for each parameter in Table 5 for two values, the “base value” (case 1) which represents the magnitude

of the parameter close to the experimental value, and new values to explore the effect of change of the parameter (cases 2 through
case 6). Simulations results (Fig. 21) show that plastic strain recovery occurs at two different characteristic rate – an initial faster
transient rate followed by a slower steady state rate – similar to what was observed in (Ghazi and Kysar, 2016). Plastic strain recovery
rate as a function of time is calculated by comparing the instantaneous thin film length at any time after >t t3 to the length of the film
immediately after unloading =t t3 which results in the negative strain in Fig. 21.

Plastic strain rate recovery results and duration are presented in Table 6.

• By comparing the results from Case 1 and Case 2 we conclude that plastic strain recovery is more significant with a higher
diffusion coefficient. It should be noted again that the diffusion coefficient in nanocrystalline metals is four orders of magnitudes
higher than the diffusion coefficient in coarse grained metals (Rajagopalan et al., 2007; WeiKysar, 2011).

• We observe no effect on the overall recovery rates for different diffusion constants at the void tip in Cases 1 and 3.

• The calculated plastic strain recovery rate indicates that increasing the plastic hardening between Cases 1 and 4 causes the
recovery to be slightly faster at the beginning with a subsequent sharp slow down.

• The simulations show that increasing the void fraction causes an increase in the recovery rate (Case 1 compared to Case 5). The
recovery rate and duration for Case 5 is in agreement with previous experimental studies and suggests that the ratio for porosity
and void in our sample is close to the value used in our simulation.

• Our results show that decreasing strain rate during loading does not affect the recovery rate (Case 1 compared to Case 6).

The strain recovery behavior for all cases is shown in Fig. 22.

Fig. 18. Results of simulation with void ratio 0.27% in the plastic strain recovery phase from t3(300 s) to t4: a) Normal Traction over grain boundary
close to the void tip; b) Diffusion flux over grain boundary close to the void tip; c) Incremental change in grain boundary thickness due to diffusion
over grain boundary close to the void tip; d) Total change in grain boundary thickness due to diffusion over grain boundary close to the void tip.
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9. Conclusions

In this work we develop a mechanistic model for plastic strain recovery in nanocrystalline copper thin films and compare the
results to experimental observations in (Ghazi and Kysar, 2016). The dominant inelastic deformation mechanism in the model is grain
boundary diffusion, driven by chemical potential gradients resulting from residual stresses and the presence of pre-existing voids in

Fig. 19. Results of simulation with void ratio 2.4% in the plastic strain recovery phase from t3 (300 s) to t4: a) Normal Traction over grain boundary
close to the void tip; b) Diffusion flux over grain boundary close to the void tip; c) Incremental change in grain boundary thickness due to diffusion
over grain boundary close to the void tip; and, d) Total change in grain boundary thickness due to diffusion over grain boundary close to the void tip.

Fig. 20. Direction of atomic flux between surface and grain boundary at void tip over time during loading (t0-t )1 Dwell time (t1-t )2 unloading (t2-t )3

and recovery (t3−t4).
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the film. We incorporate a diffusion zone and cohesive zone associated with the grain boundary and a diffusion zone associated with
the void surface. The diffusion zone admits deformation by accounting for the driving forces of atomic diffusion over the grain
boundary and void surface to determine the direction and magnitude of atomic flux within the grain boundary. A cohesive zone is

Fig. 21. Plastic strain recovery in the simulation with 2.4% void volume ration (N.B. zero time here corresponds to t3).

Table 6
Sets of parameters employed in plastic strain recovery simulations.

Residual strain (%) first strain recovery rate (1/s) first recovery time (s) second strain recovery rate (1/s)

Case 1 1-Base −10 5 × −7 10 9 3000 × −2 10 10

Case 2 2-Diff_coefficient × −9 10 6 × −9.5 10 11 – × −9.5 10 11

Case 3 3-C-void tip 2 × −1.3 10 5 × −7 10 9 3000 × −2.9 10 10

Case 4 4-Hardness 2 × −1.3 10 5 × −1.1 10 8 2500 × −1.9 10 11

Case 5 5-Void fraction 2 × −11 10 5 × −6.8 10 8 4000 × −2.5 10 9

Case 6 6-Loading rate 2 × −1.1 10 5 × −4.8 10 9 4000 × −2 10 10

Fig. 22. Plastic strain recovery rate for all parameters.
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also associated with the grain boundary to admit deformation via a traction-separation constitutive behavior of the grain boundary
defined by a potential function.

The non-linear constitutive equations for deformation behavior inside the grain boundary and void surface are implemented
through a user element (UEL) subroutine in the commercial finite element code ABAQUS/Standard. We use the Griffith model to
identify acceptable ranges of parameters for the diffusion zone and the cohesive zone in the context of mesh size and decohesion
length of the cohesive zone. We perform a series of simulations to explore the effects on plane strain recovery rate of parameters such
as grain boundary diffusion coefficient, void to model length ratio, plastic hardening rate, and gradient of flux at void tip. The results
for all simulations display two characteristic plastic strain recovery rates: an initial faster transient rate followed by a slower steady
state rate. This findings is consistent with previous experimental results (Ghazi and Kysar, 2016; Wei et al., 2007).

Our model suggests that external tensile loading of the system activates diffusion mechanisms that lead to a build-up of surplus
material in the region very near the tips of voids. The surplus material is transported via a net diffusion flux on the grain boundary
toward the void tip as well as a net diffusion flux from the void surface to the region very near the void tip. Upon removal of the
external loads, the surplus material generates a compressive residual stress normal to the grain boundary near the void tip. The
normal stress induces diffusion flux away from the void tip. At first two diffusion fluxes are active: the compressive residual stress
drives a net diffusion flux on the grain boundary away from the void tip, and the jump in chemical potential between the grain
boundary and the void surface drives a net flux from the grain boundary to the void surface. The specimen shortens as a consequence
of these diffusion mechanisms which manifests itself experimentally as plastic strain recovery. Activation of the two diffusion me-
chanisms leads to a gradual decrease of compressive residual stress on the grain boundary near the void tip. Once the compressive
stress—and the related stress gradients— decrease sufficiently, the diffusion flux from the grain boundary to the void surface is the
dominant deformation mechanism, and the resulting smaller magnitude of the overall diffusion flux leads to the slower characteristic
rate of plastic strain recovery.
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Appendix 1

The virtual work of this process is

∫ +T δu T δu ds( )
s

n n t t
(50)

which represents the cohesive surface energy. This term considers the effect of normal (Tn) and tangential (Tt) traction on the
corresponding cohesive surface.

Tn and Tt can be rearranged by defining an and at as

= = ×T T n t a n t n(Δ , Δ ) (Δ , Δ ) Δn n n (51)

= = ×T T n t a n t t(Δ , Δ ) (Δ , Δ ) Δt t t (52)

where = − −n u h hΔ ( ( ))n
o , = −t u uΔ ( )t s , h is the current grain boundary thickness, h0 is the initial grain boundary thickness, and

us is the relative displacement across the grain boundary. By substituting Tn and Tt into the Eq. (50), the contribution of the cohesive
zone element to the principle virtual work is obtained as

∫ ∫+ − − +a u δu a u δu ds a h h δu a u δu ds( ) ( ( ) ) .n n n t t t n n t s t
0 (53)

Using the discretized form of un and ut from Eq. (53) and Eq. (22) we can rewrite Eq. (53) as

∫ ∫+ − − +a n Q U n Q δU a t Q U t Q δU ds a h h n Q δU a t Q δU ds( ( ) ( ) ( ) ( ) ) ( ( )( ) ( ) )n
i iL L j jK K

t
i iL L j jK K

n
j jK K

t
j jK K0 (54)

where summation over the lower indices K and L is implied. Thus Eq. (54) has the final form

−K U fKL L K (55)

where the matrix K and the vector f are

∫= +K a n Q n Q a t Q t Q ds[ ( )( ) ( )( )]KL
n

j jK I IL
t

j jK I IL (56)

∫= − +f a n Q h h a t Q u ds[ ( )( ) ( )( )] .k
n

j jk
t

j jk
s

0 (57)

By substituting Eq. (5) and Eq. (6) in Eq. (51) and Eq. (52), an and at are found as
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The tangential stiffness matrix T( ) is obtained by using the Newton-Raphson definition as
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where K and f are found from Eqs. (30) and (31). The derivative of matrix K to the field variable at nodes U" " is
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Furthermore by expanding all the terms in the two equations above
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By substituting Eqs. (66)–(69) into Eq. (62) and Eq. (63) the stiffness matrix is
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and
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And the residual (RHS) is expressed as
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Appendix 2

To find the stiffness matrix for the diffusion flux it is necessary to define the weak form of Eq. 8

D∫ ⎛
⎝

− ∂
∂

⎞
⎠

=j h σ
s

δj ds 0
S gb gb

n

gb
Γ (74)

where δjgb is a “kinematically” admissible atomic flux-field, h represents diffusion zone thickness, δgb, therefore

D∫ ∫= ⎛
⎝

∂
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⎞
⎠

j δj ds h σ
s
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n
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By applying the divergence theorem to the Eq. (75) there results

D
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(76)

The diffusion zone thickness, h, at any time between two iterations can be defined as = − + +h h t α h t t α( )(1 ) ( Δ ) , where
≤ ≤α0 1 is an adjustable parameter controlling the integration scheme and h t( ) and +h t t( Δ ) are related as + = +h t t h t h( Δ ) ( ) Δ .

By substituting this relation between h t( ) and +h t t( Δ ) the thickness is obtained as

= +h h t hα( ) Δ (77)

where h t( ) is h at time t, shown hereafter as h0. By setting =α 0 the integration formula is reduced to the standard explicit forward-
Euler scheme, whereas =α 1 represents the first iteration in a fully implicit integration scheme. In this work, we have set =α 0.5 to

represent the average h between each two iterations. By substituting Eq. (77) to Eq. (76) and recalling = −
∂

∂( )h tΔ Δ Ω
j

s
gb , we find

D D D D D∫ ∫⎜ ⎟ ⎜ ⎟
⎛

⎝
−

∂

∂

∂

∂
−

∂

∂
⎞

⎠
= − ⎛

⎝

∂

∂
+ ∂

∂
⎞

⎠
+

−
+j δj σ α t

j

s

δj

s
σ α t

j

s
δj ds σ h

δj

s
σ h

s
δj ds σ h δj( ) ΩΔ

( )
ΩΔ

( )
[ ( )] .

S gb gb
n

gb
gb gb n

gb
gb

gb S
n

gb
gb n

b gb
n

gb gb

2

2 0
0

Γ Γ

(78)

This term is used to calculate the residual vector required to define the element in subroutine UEL. The output of the weak form
formulation represents the value for diffusion flux at each node. The first derivative of the flux with respect to position s is used to
find the change in grain boundary thickness. In our simulation the diffusion zone element between two grains is defined as a 2-node
one-dimensional element with two Gaussian points in a Lagrange framework (cf. Fig. 8). The shape functions are linear over the
element and are defined as

= −S ξ1
2

(1 )1
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= +S ξ1
2

(1 )2

which preserve the continuity of the diffusion flux field variable, J, but not its first derivative which represents the change in grain
boundary thickness and is constant over each element. Therefore at the node shared between two adjacent diffusion zone elements,
the average value of the derivative of diffusion flux between two elements is used to calculate incremental change in grain boundary
thickness.

Eq. (75) and Eq. (76) can be expressed respectively as
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where σn is calculated from the cohesive traction-separation equation inside the grain boundary. Over each element, σn is determined
as a function of traction on each element's node using linear shape function S

∑=
=

σ S σ .n

K
K K

1

3

Since the shape function is linear, the second derivative in Eq. (79) is zero, =∂
∂

0S
ζ

2
2 . By implementing the summation in the Eq.

(79), the finite element form of the equation is obtained as

=K j Fkn gb n n( ) (80)

where
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and
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Appendix 3

To compute the change in the shape of the void, Eq. (41) needs to be integrated with respect to time. The value of ϕ and its
derivative is negligible compared to the other parameters and can be eliminated from the equation. The term that represents the
curvature of the void surface in the flux equation is integrated using a semi-implicit Euler scheme where h sΔ ( ) denotes the normal
displacement of the void surface in the reference configuration during time interval tΔ , so =h tυ tΔ Δ ( )n ,

Let κ0 denote the curvature of the surface at time t. Then, the curvature at time +t tΔ may be estimated as

O+ = + ∂
∂

+ +κ t t κ h
s

κ h h( Δ ) Δ Δ (Δ ).0
2

2 0
2 2

(82)

At any time between t and +t tΔ the curvature is approximated as

= − + +κ α κ ακ t t(1 ) ( Δ )0 (83)

where ≤ ≤α0 1, similar to grain boundary diffusion zone, is an adjustable parameter to control the integration scheme. Finally,
substituting Eq. (82) to Eq. (41) we obtain the final weak form for surface diffusion zone as
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(84)

After evaluating surface diffusion at each node, we compute the normal displacement from = − ∂ ∂h t j sΔ Δ Ω /s .
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