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The asymptotic stress and deformation fields associated with the contact point singularity
of a nearly-flat wedge indenter impinging on a specially-oriented single face-centered
cubic crystal are derived analytically in a companion paper. In order to investigate the
extent of the asymptotic fields, the indentation process is simulated numerically using sin-
gle crystal plasticity. The quasistatically translating asymptotic fields consist of four angu-
lar elastic sectors separated by plastically deforming sector boundaries, as predicted in the
companion paper. The asymptotic stress distributions are in accord with the analytical pre-
dictions. In addition, simulations are performed for a wedge indenter with a 90� included
angle in order to investigate the consequences of finite deformation and finite lattice rota-
tion. Several salient features of the deformation field for the nearly-flat indenter persist in
the deformation field for the 90� wedge indenter. The existence of the salient features is
validated by comparison to experimental measurements of the lower bound on geometri-
cally necessary dislocation (GND) densities.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Indentation is a common method to characterize the mechanical properties of a material. Proper interpretation of inden-
tation experiments requires a detailed understanding of the stress and deformation fields in the material under the indenter.
The deformation fields are, in general, highly complex with a three-dimensional character and large rotations and strains
induced by multiple deformation mechanisms (e.g. both elastic and plastic). The deformation fields at the point where
the indenter loses contact with the underlying material are especially severe. There is a well-known analogy (Prandtl,
1920) between a flat punch and a stationary crack, so it is apparent that the stress and deformation fields are singular at
these points. Therefore, in the context of indentation, such a point will be referred to as a contact point singularity. For ind-
enters that are not flat punches, the contact point singularity propagates along the surface of the material during indentation.
Thus, the proper analog of a contact point singularity of a non-flat indenter is a quasistatically closing crack tip, which pro-
vides a framework for detailed analysis of the contact point singularity.

The singular fields associated with crack tips have been studied extensively for many different material classes. In the
context of an elastic–plastic material, an approximation of the constitutive response as being elastic, ideally-plastic simpli-
fies the set of governing equations sufficiently to allow the derivation of analytical solutions for the stress and deformation
fields. While idealized, these stress and deformation fields serve as a baseline against which fields from numerical analyses
that incorporate more realistic constitutive relations can be compared.

Nanoindentation often induces deformation into individual, or at most a few grains, of a material so it is necessary to con-
sider the anisotropic mechanical constitutive behavior for proper interpretation of the results. This motivated Kysar et al.
. All rights reserved.
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(2010) to study plastic deformation induced experimentally in a single face-centered crystal of nickel due to wedge inden-
tation with a 90� included angle. The orientation of the crystal relative to the wedge indenter was chosen such that the defor-
mation and stress fields were two-dimensional to within experimental accuracy. The lattice rotation associated with the
induced plastic deformation was measured with a 3 lm spatial resolution using Orientation Imaging Microscopy (OIM)
based upon automated Electron Backscatter Diffraction (EBSD). The spatially-resolved lower bound of the total density of
geometrically necessary dislocations (GNDs) was determined from the Nye dislocation density tensor based upon calculation
from the two-dimensional lattice rotation. The experimental results strongly suggest that plastic deformation in the region
of the contact point singularities shares characteristics with asymptotic fields associated with crack tips in single crystals in
the sense that GND density structures exist along special crystallographic directions that emanate from the contact point
singularity.

In order to investigate the detailed deformation state near a contact point singularity associated with indentation into a
single crystal, Saito and Kysar (2011)—in a companion paper—considered a nearly-flat wedge indenter as it penetrates the
surface of a single crystal so that a two-dimensional deformation state is induced. A nearly-flat wedge is assumed in the
analysis so that the change of lattice orientation due to rotation of the crystal lattice is negligible. At first glance, there is
no reason to think that the asymptotic fields under the contact point singularities of a nearly-flat wedge should be any dif-
ferent than those under a flat punch. However, Drugan and Rice (1984) showed there to be a restriction on stress disconti-
nuities across quasistatically moving surfaces within a general class of elastic–plastic metals. Rice (1973, 1987)
demonstrated that for special orientations of face-centered cubic (FCC) and body-centered cubic (BCC) crystals, the asymp-
totic fields associated with a stationary contact point singularity are expected to have interior surfaces across which the
stresses change discontinuously. Thus the asymptotic fields associated with a quasistatically propagating contact point sin-
gularity must be different than the stationary case in order to ensure that stress discontinuities do not exist (Rice, 1987).

Asymptotic fields near contact point singularities consist of angular sectors of material within which the deformation is
either instantaneously elastic or plastic. The boundaries between the angular sectors are rays that emanate from the singular
point that are limited to lie either parallel to or perpendicular to the effective in-plane slip systems that exist in the specially-
oriented crystals used in the analysis. For the case of a flat punch impinging on single crystals for which the contact point
singularity remains stationary, Rice (1973, 1987) predicts the asymptotic fields in the FCC orientation to consist entirely of
plastic angular sectors with plastically-deforming sector boundaries across which the stress state changes discontinuously.
For the case of a nearly-flat wedge indenter for which the contact point singularity translates quasistatically along the mate-
rial surface, Saito and Kysar (2011) predict the asymptotic fields in the FCC crystal to consist entirely of elastic angular sec-
tors separated by plastically-deforming sector boundaries across which the stress state changes continuously. Interestingly,
the angular positions of the sector boundaries are the same for both cases.

Rice (1987) demonstrated that the form of the asymptotic fields in single crystals depends upon whether the singularity is
stationary or moving quasistatically. The form of the asymptotic fields may also be sensitive to the elastic properties of the
material such as Poisson’s ratio (Zhang and Huang, 1994; Huang, 1995). In addition, the form of the asymptotic fields may
be sensitive to the ability or inability of certain dislocation structures that lead to the formation of kink-like shear (Drugan,
2001). Finally, since the analytical formulation to derive the asymptotic fields is a generalization of standard anisotropic
slip-line theory, the analytical solutions are generally not unique and finite lattice rotation is not taken into account. Thus,
numerical methods are complementary to the analytical methods for analysis of the asymptotic stress and deformation fields.

The main purpose of this paper is to investigate the asymptotic fields associated with the contact point singularity of a
nearly-flat wedge indenter impinging onto an elastic, ideally-plastic single crystal and to compare the results to the analyt-
ical solutions by Saito and Kysar (2011). A nearly-flat wedge indenter is assumed so that the effects of crystal lattice rotation
can be neglected. While the analytical and the numerical solutions both assume highly idealized elastic, ideally-plastic con-
stitutive relationships, the resulting stress and deformation fields serve as a point of reference for further analyses that incor-
porate more realistic constitutive relations. In addition, we also report the results of single crystal plasticity simulations of
indentation with a 90� wedge indenter. In this way the effects of finite deformations and lattice rotations caused by the 90�
wedge indenter can be determined by comparison with the results for the nearly-flat wedge. In addition, the results can be
compared to experiments by Kysar et al. (2010) of indentation into a nickel single crystal with a 90� wedge indenter.

This paper is organized in the following way. We briefly review in Section 2 the analytical predictions of the asymptotic
stress and deformation fields associated with a quasistatically moving contact point singularity in a specially-oriented FCC
single crystal in the limit of a nearly-flat indenter. Sections 3 and 4 discuss the basics of single crystal plasticity and the finite
element implementation, respectively, used in the simulations. The results of the single crystal plasticity finite element sim-
ulation of indentation with the nearly-flat indenter are presented in Section 5 and are compared to the analytical predictions
of Saito and Kysar (2011). Then, Section 6 presents the results of single crystal finite element simulations of indentation with
a 90� wedge and compares them to both the nearly-flat wedge simulation as well as experiments by Kysar et al. (2010). Fi-
nally, the conclusions are discussed in Section 7.
2. Analytical solution for nearly-flat wedge indentation in single crystal

Single crystals exhibit anisotropic behavior when deformed plastically due to the fact that plastic deformation occurs by
the creation and motion of dislocations within the crystal on discrete crystallographic planes (with unit normal n) on which
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dislocations exist and in discrete directions (denoted by unit vector s) in the planes in which dislocations move. Together, the
unit vectors n and s define a slip system. For a rate independent material, plastic deformation occurs on a specific slip system
when a resolved shear stress on the slip plane in the direction of slip reaches a critical value. This is expressed for the jth slip
system as
1 We
opposit
sðjÞj rijn
ðjÞ
i ¼ �sðjÞ; ð1Þ
where rij is the applied Cauchy stress tensor and s(j) is the experimentally determined critical resolved shear stress of the
slip system. (N.B The summation convention is followed for repeating indices, but no summation is performed for any index
in parentheses.) Generally, there exist several slip systems depending on the crystal type. An FCC crystal has 12 slip systems
with slip planes {111} and slip directions h110i, where {111} corresponds to the family of slip planes n, and h110i corre-
sponds to the family of slip directions s.

Rice (1987) showed that if a line loading is applied parallel to the [110] direction in an FCC crystal, plane deformation
conditions are achieved on the corresponding (110) plane with three effective in-plane slip systems. These effective in-plane
slip systems will be referred to as slip system (i)–(iii), respectively as detailed in Fig. 1a, where each in-plane slip system has
an effective slip plane unit normal, N(j), and effective unit slip direction, S(j), that both lie in the (110) plane. Slip system (i) is

oriented at an in-plane angle of /1 ¼ tan�1
ffiffiffi
2
p� �

¼ 54:7�, slip system (ii) at /2 = 0�, and slip system (iii) at

/3 ¼ � tan�1
ffiffiffi
2
p� �

¼ �54:7� counterclockwise relative to the ½�110� direction. The plastic yield surface associated with the

in-plane deformation state is shown in Fig. 1b. As discussed in detail elsewhere (Rice, 1987; Kysar et al., 2005), the construc-
tion of the yield surface follows directly from Eq. (1).

A schematic representation of the system under consideration is shown in Fig. 2a, where a wedge indenter impinges on a
single crystal with three effective in-plane slip systems that have a reflection symmetry about the vertical line that passes
through the center of the indented region. The center of the indented region represents an antisymmetry boundary1 so it is
necessary to model only one-half the domain, in this case the right half. We will model the indentation process numerically
assuming a nearly-flat wedge with an included angle slightly less than 180� in order to compare the results to analytical cal-
culations from the companion paper (Saito and Kysar, 2011). In addition, we numerically model experiments by Kysar et al.
(2010) of the indentation due to a wedge indenter with an included angle of 90� to gain insight into how the deformation fields
differ from those of the nearly-flat wedge as a consequence of finite lattice rotation.

For the nearly-flat wedge, we will focus attention on the structure of the asymptotic fields associated with the contact
point singularity shown schematically as point O in Fig. 2b, which gives a detailed view of the region near the contact point
singularity on the right half of the domain. The contact point singularity translates to the right as the indentation process
proceeds. The Saito and Kysar (2011) derivation assumes isotropic elasticity and accounts for the fact that stress discontinu-
ities cannot occur in the elastic, ideally-plastic single crystal as the contact point singularity propagates quasistatically; how-
ever discontinuities of velocity are admissible in the fields. The angular distribution of the stress components within
individual elastic sectors was derived by Drugan et al. (1982) and Drugan (2001). The boundary conditions assume friction-
less contact between the indenter and the crystal so that r12 = 0 and r22 < 0 on h = �180� in Fig. 2b and traction-free con-
ditions ahead of the propagating contact point singularity so that r12 = r22 = 0 on h = 0�. Full details of the motivation and
derivation of the asymptotic fields are in the companion paper (Saito and Kysar, 2011).

The structure of the asymptotic field suggested by the analytical predictions for an FCC crystal is shown Fig. 2b. The
asymptotic field consists of angular sectors centered at the contact point singularity within which the material response
is instantaneously elastic; these are denoted as elastic sectors. The material response at the boundaries between the elastic
sectors, on the other hand, is instantaneously plastic. The stress state for the FCC case valid for �180� 6 h 6 0 is
adopt the term antisymmetric to describe the lattice rotation field that, according to measurements by Kysar et al. (2010), is equal in magnitude but
e in sign on the two sides of the antisymmetry boundary.
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The details of the asymptotic solution are plotted in Fig. 3, where the stress trajectory relative to the yield surface in stress
space is shown in Fig. 3a and the angular variation of the individual stress components is shown in Fig. 3b. At h = 0�, the
stress is at the origin of the stress space. The trajectory then proceeds clockwise in a circle in stress space as h decreases from
0� to �180�. In the process, the stress trajectory meets the yield surface side (cf. Fig. 1b) associated with slip system (iii) at
h = �54.7�. Since this coincides with the S(3) that emanates from the contact point singularity (i.e. line OQ in Fig. 2b), plastic
deformation is induced on slip system (iii) in a glide sense (Rice, 1987). Similarly, the stress trajectory meets the yield surface
side associated with slip system (ii) at h = �90�; since this coincides with the N(3) that emanates from the contact point sin-
gularity (i.e. line OR), plastic deformation is induced on slip system (ii) in a kink sense (Rice, 1987). Similarly, a glide shear
deformation is induced on slip system (i) on line OT.
3. Single crystal plasticity

We now discuss the details of the finite element model simulation of the deformation around a contact point singularity
in an FCC single crystals. One simulation will be for the limiting case of a nearly-flat wedge indentation and another will be
for a 90� wedge indentation.
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variation of individual stress components.
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3.1. Kinematics and constitutive relationships and numerical algorithm

The study of single crystal plasticity initiated with Taylor and Elam (1923). The kinematics and constitutive relationships
of single crystal plasticity are well established (Hill, 1966; Rice, 1971; Hill and Rice, 1972; Havner, 1972; Havner, 1973; Hill
and Havner, 1982), as reviewed in Havner (1992). For a general elastic–plastic material under conditions of an infinitesimal
deformation gradient, the elastic strain rate and the plastic strain rate sum to the total strain rate is given by
_eij ¼ _ee
ij þ _ep

ij; ð3Þ
where superposed dots on the variables refer to differentiation with respect to time. The Schmid factor of the jth slip system
is
lðjÞij ¼
1
2

sðjÞi nðjÞj þ sðjÞj nðjÞi

� �
; ð4Þ
where n(j) and s(j) denote slip normal and slip direction, respectively, on the jth slip system. The resolved shear stress on the
jth slip system, 1(j), is calculated, from the Cauchy stress tensor rij as
1ðjÞ ¼ rijlðjÞij : ð5Þ
The plastic strain rate is calculated by summing the contribution of plastic slip rate over all N slip systems as
_ep
ij ¼

XN

j¼1

lðjÞij
_cðjÞ; ð6Þ
where c(a) is the plastic slip on the jth slip system. The stress rate _rij is related to the elastic strain rate as
_rij ¼ Lijkl _ee
kl ¼ Lijkl _ekl � _ep

kl

� �
; ð7Þ
where Lijkl is the elastic moduli tensor having the symmetry Lijkl = Ljikl = Lijlk = Lklij, due to stress tensor symmetry, strain tensor
symmetry, and the existence of an elastic potential energy. A viscoplastic (i.e. rate-dependent) constitutive formulation in
the form of a power-law expression (Hutchinson, 1976) is used to relate stress state to plastic slip rates on each slip system
such that
_ck ¼ _c0sgnðsðjÞÞ 1ðjÞ

gðjÞ

� �m

; ð8Þ



Y. Saito et al. / International Journal of Plasticity 28 (2012) 70–87 75
where g(a) characterizes the strength of each slip system and is a functional of all past slip history and _c0 is a reference strain
rate. We choose a large value of m in the simulation so that the plastic constitutive formulation becomes almost rate-inde-
pendent and g(a) can be interpreted as the critical resolved shear stress of the jth slip system, i.e. a significant slip occurs
only on those slip systems for which 1(a) is approximately equal to g(j). Peirce et al. (1983) first used such a rate-dependent
formulation in the context of single crystal plasticity computations, as discussed by Pan and Rice (1983).

4. Finite element formulation

In order to solve boundary value problems incrementally, the equations must be discretized. A commercial software ABA-
QUS/Standard version 6.6.1 is used for the finite element simulation with a user-material (UMAT) subroutine for single crys-
tal plasticity written by Huang (1991). The formulation in the UMAT follows that of Asaro and Rice (1977), Asaro (1983).
Although the theory discussed above assumes infinitesimal deformation gradients (i.e. small strain and small rotations)
the UMAT and the simulations discussed herein account rigorously for the effects of a finite deformation gradient. The time
integration scheme implemented in the UMAT is the tangent modulus method Peirce et al. (1984) for rate dependent solids.
Following Kanchi et al. (1978) the increment in plastic slip c(j) on the jth slip system during a time increment Dt is
DcðjÞ ¼ ð1� hÞ _cðjÞt þ h _cðjÞtþDt

h i
Dt; ð9Þ
where the interpolation parameter, h, is chosen to be 0.5 following the recommendation of Peirce et al. (1984). Upon expand-
ing in a Taylor series, the strain rate is written as
_cðjÞtþDt ¼ _cðjÞt þ
@ _cðjÞ

@sðjÞ

� �
DsðjÞ þ @ _cðjÞ

@gðjÞ

� �
DgðjÞ: ð10Þ
The expression for Drij is obtained by substituting Eqs. 5, 6, 8, 9, and 10, into Eq. (7), whereupon the material Jacobian ma-
trix, @rij/@ekl, which is necessary for the iterative Newton–Raphson solution process, is obtained.

These equations, along with the constitutive hardening models, are implemented numerically within the UMAT. At the
end of each solution increment, ABAQUS passes to the UMAT the strain increment, time increment, stress state, and the solu-
tion-dependent state variables (cðjÞ; gðjÞ; sðjÞi ;mðjÞi ; c; etc.). The UMAT updates the stress state and the solution dependent
state variables, and calculates the material Jacobian matrix, @rij/@ekl, and then passes the results to ABAQUS, which then ap-
plies the next load increment and calculates the new strain increment via the iterative Newton–Raphson method. This pro-
cess is iterated until the simulation is completed.

The mesh is shown in Fig. 4a. As illustrated in Fig. 4b, we model only the right half of the material and the wedge indenter.
The mesh has fine elements near the tip of the indenter; there are 200 � 160 elements in region adeb, 200 � 20 elements in
dghe, 200 � 20 elements in gjkh, 60 � 160 elements in befc, 60 � 20 elements in ehif, and 60 � 20 elements in hkli in Fig. 4b.
More detailed images of the mesh are shown in Fig. 4c and Fig. 4d.

In this simulation, the orientation of the crystal is taken to be that shown in Fig. 2a. The function g(j) is taken to be the same
for all slip systems and it is maintained constant throughout the simulation in order to model the ideally-plastic properties
assumed in the analytical predictions. The critical resolved shear stress on each slip system is denoted as s. Other parameters
used in the simulation include: _c0 ¼ 10�3s�1, and m = 50. The elastic moduli are set as C11 = 108.2 GPa, C12 = 61.3 GPa, and
C44 = 28.5 GPa to represent an aluminum single crystal which behaves isotropically to a very good approximation. In order
to prevent the propagation of singular zero energy hourglass modes, we introduce a small (between 0.3% and 0.5% of the elas-
tic shear modulus) artificial hourglass stiffness. The element type used in the simulation is plane strain first-order 4-node
quadrilaterals that use selectively reduced integration along with a hybrid formulation. Further details of methods and pro-
cedures can be found in Kysar (2001a) and Kysar (2001b). It is important to note that the single crystal plasticity formulation
with the same parameters employed herein has been verified against the analytical solution for stress and deformation state
around a cylindrical void in a single crystal (Kysar et al., 2005; Gan et al., 2005).

For boundary conditions (cf. Fig. 4b), the displacement in the x1-direction, denoted as u1, is constrained to be zero on line
aj, and the displacement, u2, in the x2-direction is constrained to be zero on line jl. The wedge indenter is modeled as a rigid
surface oriented at an angle / relative to the upper surface of the mesh. The rigid surface moves down into the mesh as a
linear function of time during the simulation. We invoke the ‘small-sliding’ approximation since a point contacting a surface
is not expected to slide more than an element dimension. The coefficient of friction between the two surfaces is set to zero to
model frictionless indentation.

The output from the finite elements simulations will be plotted in two different forms. One will be contour plots of field
quantities in the deformed configuration shown in Fig. 5 where the rigid indenter has penetrated the material so that the
contact point singularity is at distance a from the antisymmetry boundary. The position of the contact point singularity is
marked by a small black circle in each of the contour plots. The other will be to plot field quantities on circular arcs of dif-
ferent radii (r0 = 0.1a,r1 = 0.2a,r2 = 0.3a, and r3 = 0.4a) from the contact point singularity as shown in Fig. 5. In this way, the
presence of an asymptotic behavior (i.e. behavior independent of distance from contact point singularity) can be evaluated
and, where it exists, the extent of the asymptotic region can be determined. All stress quantities are normalized relative to
the critical resolved shear stress s.

It is known (Drugan and Rice, 1984 and Drugan, 1986) that stresses cannot change discontinuously across a surface that
propagates quasistatically through an elastic–plastic material of the kind modeled in this study. Therefore, we first
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performed a numerical convergence study to ensure that the stress fields near the moving contact point singularity do not
exhibit any discontinuous behavior. The results of the convergence study are shown in Fig. 6, where nearly-flat wedge ind-
enters with several different included angles are employed while maintaining the same vertical penetration rate of the rigid
indenter into the mesh. The transition of the stress component r12 with varying angle / (cf. Fig. 4b) is instructive with regard
to whether a stress discontinuity exists. With sufficiently small values of /, (i.e. / = 0.0191� and / = 0.0382� for which the
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contact point singularity propagates two and one element lengths, respectively, each time increment) it is clear that r12 is
continuous over the entire domain as seen in Figs. 6a and b. To demonstrate convergence, we note that essentially the same
solution is predicted when values of / are chosen such that the contact point singularity propagates 3/2, 5/4, p/e, p/3, 3/p,
and e/p of an element length, respectively, per time increment, while the maximum time increment remains the same for
each value of /. Also, the same r12 field results for a series of simulations when the maximum time increment is varied for
constant values of /. In addition, the solution is stable for values of h in Eq. (9) ranging from 0.5 to 1. We will show that this
field corresponds to the analytical predictions of the asymptotic stress and deformation fields of the contact point singularity
associated with quasistatic impingement of the nearly-flat wedge indenter into the material.

On the other hand, when / is set to larger values such as / = 0.0764�, / = 0.1528�, / = 0.3056�, and / = 0.6112� as shown
in the remaining subplots of Fig. 6, it is evident that the structure of the r12 field changes dramatically and very rapid vari-
ations in r12 are evident. For the two largest values of / (i.e. / = 0.3056�, and / = 0.6112�), the r12 field converges to a solu-
tion that contains discontinuities at h =�54.7� and h = �125.3� and the value of r12 remains relatively constant within the
angular sectors. This solution is also stable for values of h in Eq. (9) ranging from 0.5 to 1. Given the discontinuous changes
in r12, this solution is not valid for the problem under consideration, but rather corresponds to the solution for a flat punch.
We do not attempt to address here the reasons that lead the numerical solutions to converge to the discontinuous solution
for the larger values of /.

Henceforth we will limit our discussion to the solution for the contact point singularity with continuous stresses for
which the included angle of the nearly-flat wedge indenter is 179.92� (i.e. / = 0.0382�) corresponding to the case of Fig. 6b.
5. Simulation results for nearly-flat wedge indentation

In order to investigate in detail the fields associated with the quasistatically moving contact point singularity, a total of
200 increments is performed in the simulation at which time the contact point singularity has passed about 120 elements on



Fig. 7. Contours of stress components associated with quasistatically propagating contact point singularity: (a) r11/s; (b) r22/s; and, (c) r12/s. The
instantaneous position of the contact point singularity is indicated by a small circle in each plot.
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line ab of Fig. 4b. The field quantities of stresses, slip increments, velocities, and lattice rotation are presented as contour
plots and also as a function of angle at various radii around the contact point singularity.
5.1. Stresses

The contours of the in-plane stress components are plotted in Fig. 7, where it is evident that all stress components are
continuous throughout the domain, although there is some numerical noise under the contact region of the wedge indenter.
In the immediate vicinity of the contact point singularity, the contour boundaries appear to be approximately radial with
respect to the contact point singularity. This suggests that, asymptotically, the stress state is approximately independent
of radius from the contact point singularity. Fig. 8 shows each of the normalized stress components taken along the different
circular arcs shown in Fig. 5. The vertical dashed lines indicate the angles of the boundaries that divide elastic sectors I, II, III,
and IV shown in Fig. 2b. In accordance with the predicted asymptotic behavior (and in spite of the numerical noise present in
the data), it is clear that the stresses do not depend systematically on radius. In addition, the numerical results for stress
distribution in Fig. 8 are very similar to the predicted distribution in Fig. 3b.

With regard to the angular distributions of the stresses in Figs. 8 and 3b, r12/s and r22/s are zero at h = 0� as required by
the boundary conditions; also r12 = 0 at h = �180� since the indenter is frictionless. The value of r12/s reaches its maximum
value at h = �90� where kink-type deformation on slip system (ii) is expected to occur. The stresses r11/s and r22/s reach
almost the same normalized stress value of between �5 and �6 at h = �180�, which indicates a high degree of stress triax-
iality that inhibits plastic deformation from occurring under the indenter.

The stresses along different circular arcs at various radii from the contact point singularity are plotted in stress space in
Fig. 9; these results also confirm the asymptotic nature of the solution since there is no systematic change with radius. Refer-
ring specifically to Fig. 9a, the stress trajectory starts very near the center of the yield surface at h = 0� in the physical domain,
so that r12/s = 0 and r11/s = r22/s, indicating the stress states to be elastic. As h decreases to h = �54.7� within elastic sector I
in Fig. 2b, the trajectory proceeds clockwise in Fig. 9a and touches a line segment of the yield surface tangentially activating
the slip system (iii). From h = �54.7�, the stress trajectory enters elastic sector II until it touches tangentially the top line seg-
ment of the yield surface activating slip system (ii). The stress trajectory then continues into elastic sector III until it reaches
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the upper right side line segment of the yield surface activating the slip system (i) at h = �125.3� of the physical domain.
Then, the trajectory goes back to near the origin of stress space where the stress state is elastic within elastic sector IV.
The last segment shows slightly different behaviors on different circular paths due to the numerical errors where elements
experienced significant deformation under the wedge indenter as the singular point passed.

5.2. Slip increments

Fig. 10 shows increments of plastic slip that occur during a small increment of movement of the contact point singularity
to the right. The plastic slip increment is normalized to obtain the dimensionless quantity _cðjÞa= _a. Three rays of plastic slip
increment emanate from the contact point singularity. From Fig. 10a and Fig. 2a, it is clear that concentrated glide shear on
slip system (i) occurs at h = �125.3� because the orientation of the concentrated slip in Fig. 10a is on the line parallel to slip
system (i) that emanates from the contact point singularity. Similarly, from Fig. 10b, it is apparent that a concentrated kink-
shear due to the slip system (ii) occurs on h = �90.0� because the orientation of the concentrated slip coincides with the nor-
mal to slip system (ii) that emanates from contact point singularity. Also, concentrated glide shear on slip system (iii) occurs
at h = �54.7�, as evident from Fig. 10c.

The sum of the three slip increments is shown in Fig. 10d which also indicates four characteristic points of the slip incre-
ment field labeled as A, B, C and D. Point A coincides with the contact point singularity. The glide shear ray on slip system (i)
begins as point A and reaches the line of antisymmetry at point B. Then, interestingly, another ray of slip increment due to
kink-shear on the slip system (i) emanates from point B along the normal direction to slip system (i). At point C it meets the
kink-shear ray on slip system (ii) that emanates from point A. The path traversed through the material by point C from the
beginning of the indentation process to the current time in the simulation is indicated by the white line from point O at the
origin to point C in Fig. 10d. Taking into account the orientations of the active slip systems and assuming infinitesimal defor-
mations, the line OC ideally is oriented at �64.7� relative to the upper surface of the crystal. The significance of line OC is that
the material below it has suffered plastic deformation only from slip system (i). Above line OC, plastic deformation at a mate-
rial point will be activated sequentially and individually by all three slip systems as the contact point singularity propagates
to the right. From the antisymmetric nature of this problem, slip system (iii) is the only slip system that is activated under
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the reflection of line OC about the antisymmetry axis on the left side of the domain. Hence, both slip system (i) as well as slip
system (iii) are expected to contribute to plastic deformation that occurs directly on the antisymmetry boundary. From an-
other perspective, slip system (ii) is not expected to be activated on the antisymmetry boundary because r12 = 0. Thus,



Y. Saito et al. / International Journal of Plasticity 28 (2012) 70–87 81
dislocations from slip system (i) and slip system (iii) are expected to create a wall of dislocations along the antisymmetry
boundary as point B moves downward into the crystal during indentation.

Plastic slip increments along circular arcs around the contact point singularity are shown in Fig. 11 for different radii. The
slip increments occur predominantly in the special directions shown in Fig. 10 that correspond to the sector boundaries in
Fig. 2b; the active slip systems at each sector boundary are in accord with the analytical predictions. In addition, Fig. 11
shows that the plastic slip increments reduce to a negligible magnitude in the regions between the sector boundaries, so that
the material in the sectors themselves undergoes predominantly elastic deformation. Finally, Fig. 11 demonstrates that the
magnitude of the slip increments decreases with distance from the contact point singularity.
5.3. Velocity fields

While there can be no discontinuities of stress associated with the quasistatically propagating contact point singularity,
discontinuities in velocity are admissible (Drugan and Rice, 1984; Drugan, 1986). Fig. 12 shows the velocity fields normalized
by _a. Rapid variations in v1= _a are seen at angles h = �54.7� and h = �125.3� relative to the contact point singularity that coin-
cide, respectively, with glide shear rays on slip system (iii) and (i), respectively. Fig. 12 shows there to be a rapid change in
v1= _a that extends from point B to point C. In addition, the contour boundaries of velocity emanate radially from points A and
B to a very good approximation, as expected for an asymptotic field.

The distributions of the normalized velocities on circular arcs around the contact point singularity are shown for different
radii in Fig. 13, where it is clear that the velocities vary only slightly with radius. The value of v2= _a change distinctly at each
of the three sector boundaries, whereas the value of v1= _a changes distinctly at the boundary between sectors I and II and
between sectors III and IV, but not at the boundary between sector II and III. Both velocities are approximately constant with-
in the sectors, which indicates that the velocities due to elastic deformation within the sectors is very small as compared to
the velocities induced by plastic deformation in the sector boundaries. Velocity discontinuities are allowable in radial direc-
tions from the contact point singularity but velocity discontinuities in the circumferential direction are not admissible. In
Fig. 13, the radial component of the velocity, v r= _a, changes distinctly at each of the sector boundaries; however the circum-
ferential velocity component, vh= _a, is continuous for all h.
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Fig. 12. Normalized velocity fields: (a) v1= _a; (b) v2= _a; and, (c) jv j= _a.
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Fig. 14. Rotation of crystal lattice: (a) lattice rotation in degrees; (b) normalized lattice rotation rate, _x3a= _a.
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5.4. Lattice rotation

The crystal lattice rotates as a consequence of plastic slip. Given that a two-dimensional deformation state is induced in
the crystal, the only non-zero component of lattice rotation, denoted as x3, is about the x3-axis (cf. Fig. 2b) where a positive
rotation is defined as counterclockwise. Contours of lattice rotation and lattice rotation rate (normalized as _x3a= _a) are
shown in Figs. 14a and b, respectively. Below line OC (cf. Fig. 10d) the lattice rotation is negative and the kink-shear on slip
system (i) that coincides with line BC contributes the majority of the lattice rotation. Above line OC the lattice rotation is
positive and the kink-shear on slip system (ii) on line AC contributes the majority of the lattice rotation. Thus the total lattice
rotation changes sign across line OC. This conclusion is reinforced by the distribution of lattice rotation rate in Fig. 14b,



Fig. 16. Finite element mesh for wedge indentation with 90� included angle: (a) Geometry of mesh and rigid indenter; (b) Deformed mesh after indentation
to depth of 250 lm.
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where the structure of the field is consistent with the structure of the total slip increment field in Fig. 10d. Fig. 15 shows the
variation of lattice rotation rates on circular arcs at different radii from the contact point singularity. The results also dem-
onstrate how the lattice rotation rate diminishes with distance from the contact point singularity.

6. Simulation results for 90� wedge indentation

In order to investigate the effect of finite deformations and lattice rotations, we compare wedge indentation simulations
(Kysar et al., 2010) using a 90� included angle rigid indenter (with a slight radius of curvature at the tip) to the results using a
nearly-flat wedge. The mesh near the indented region is shown in Fig. 16a prior to deformation. The simulation procedures
employed were identical to those described in Section 4 except that the material is assumed to be a nickel single crystal
rather than an aluminum single crystal. Thus, the only difference is the elastic properties; the orientation of the crystal as
well as the plastic properties are the same for both the nearly-flat wedge simulation and the 90� angle wedge simulation.
Fig. 16b shows the mesh after 250 lm of indentation. Only the right half of the domain needs to be modeled.

The normalized plastic slip increments on individual slip systems are shown in Fig. 17. We first recall that the deforma-
tion fields under the nearly-flat wedge show a kink-shear band on slip system (i) that coincides with line BC of Fig. 10d. This
feature persists to the case of the deformation field under the 90� wedge indenter as seen in Fig. 17a where concentrated
glide shear on slip system (i) emanates from the contact point singularity and extends down toward the antisymmetry



Fig. 17. Increment of plastic slip, _cðjÞa= _a, on effective in-plane slip systems: (a) Slip System (i); (b) Slip System (ii); (c) Slip System (iii); (d) Total from all slip
systems.
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boundary along the local S(1) direction from which concentrated kink-shear is activated and extends down and away from
the antisymmetry line in the direction of the local N(1). Thus the distribution of _cð1Þa= _a is analogous to that for the case of the
nearly-flat wedge, as seen in Fig. 10a; the only difference is that slip system (i) in Fig. 17a has obviously rotated and de-
formed relative to the nearly-flat case. The concentrated kink-shear that extends down and away from the antisymmetry
line is seen experimentally in Fig. 7a of Kysar et al. (2010) in the form of spatial variations of GND densities on slip system
(i) that coincide with local direction N(1) in the deformed configuration. Thus, the existence of the predicted kink-shear bands
is experimentally validated.

The distribution of _cð2Þa= _a in Fig. 17b is significantly different than that in Fig. 10b. For the case of the nearly-flat wedge, a
concentrated kink-shear originates from the contact point singularity, whereas for the 90� wedge the concentrated kink-
shear from the contact point singularity is much diminished. Another significant difference is that for the 90� wedge, slip
system (ii) is activated at the point where concentrated glide shear on slip system (i) meets the antisymmetry boundary. Slip
system (ii) is not activated at the antisymmetry boundary for the nearly-flat wedge because the resolved shear stress on slip
system (ii) is zero (since the antisymmetry boundary requires r12 = 0 and S(2) is originally horizontal and remains essentially
horizontal throughout the infinitesimal deformation of a nearly-flat wedge indentation). However the resolved shear stress
on slip system (ii) becomes non-zero as the crystal rotates due to plastic deformation on slip system (i) during the 90� wedge
indentation.

Fig. 17c shows the distribution of _cð3Þa= _a . A concentrated glide shear originates from the contact point singularity and
extends along the local S(3) direction; this also exists for the case of the nearly-flat indentation (cf. Fig. 10c). In fact, the slip
activity extends further into the material for the 90� wedge than it does for the nearly-flat wedge. The finite deformation and
rotations induced under the 90� wedge activates slip system (iii) immediately under the indenter; however the slip activity
does not extend all the way to the antisymmetry boundary. The analog of this slip activity for the nearly-flat wedge is com-
pletely absent.

The distribution of the total slip increment, _cðtotÞa= _a, from all three effective slip systems is shown in Fig. 17d. All the slip
increment features in the slip increment fields for the nearly-flat wedge shown in Fig. 10b persist as the included angle of the
indenter is reduced from essentially 180� to 90�, although the relative magnitudes and extents of plastic slip increment
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within the domains may vary. The only substantial difference in the slip increment fields is that slip system (ii) is activated at
the antisymmetry boundary due to the effects of finite rotations under the 90� indenter, whereas it is not for the case of the
nearly-flat wedge. Thus, we conclude that both slip systems (i) and (ii) are activated in the region under the 90� tip, near and
to the right of the antisymmetry boundary whereas only slip system (i) is active in that region for the case of the nearly-flat
wedge. As a consequence, the dislocation structure is expected to consist of dislocations from slip systems (i) and (ii) on the
right of the antisymmetry boundary and is expected to consist of dislocations from slip systems (i) and (iii) immediately to
the left of the antisymmetry boundary. The experimental measurements of the GND densities in Figs. 7 and 8 of Kysar et al.
(2010) bear out these predictions, both with regard to the existence as well as the signs of the GND densities on the pertinent
slip systems.

7. Conclusion

Finite element simulations of nearly-flat wedge indentation into elastic, ideally-plastic face-centered cubic (FCC) crystals
under plane strain conditions are performed. The included angle of the indenter was chosen to be 179.92� degrees so that the
resulting plastic deformation induces a negligible amount of lattice rotation. The stresses, velocities, slip increments, lattice
rotation, and lattice rotation rates of the fields for the quasistatically moving contact point singularity are all consistent with
the predicted asymptotic fields based on an analytical model by Saito and Kysar (2011). Specifically, sufficiently close to the
contact point singularity the asymptotic fields vary only with angle. The fields consist of four angular sectors that instanta-
neously undergo elastic deformation; however instantaneous plastic deformation is induced at the boundaries between the
sectors. The stresses are continuous with angle, but there are rapid variations in the radial component of velocity relative to
the contact point singularity, consistent with known requirements for interior surfaces of deformation that propagate
through a general class of elastic–plastic materials. Finally, the stress distribution as a function of angular position as well
as the trajectory of the stresses in stress space are in close accordance with the analytical predictions.

In addition, simulations are performed for a wedge indenter with a 90� included angle in order to investigate the conse-
quences of finite deformation and finite lattice rotation. The salient features of the deformation fields for the nearly-flat in-
denter persist in the deformation fields for the 90� wedge indenter. The main effect of the finite lattice rotation is to cause a
second slip system to be activated at the antisymmetry boundary, which is consistent with experimental measurements of
GND densities (Kysar et al., 2010). One other characteristic feature of the deformation fields in the numerical predictions is a
concentrated kink-shear deformation that emanates from the antisymmetry boundary; such features are consistent with
experimental measurements of GND density structures (Kysar et al., 2010).
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