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a b s t r a c t 

Graphene is a two-dimensional material that consists of a single layer of carbon atoms covalently bonded 

in a hexagonal lattice that has incredible mechanical, electrical, and thermal properties. Nanoindentation 

experiments on freely-suspended circular membranes of mechanically exfoliated single crystal graphene 

have demonstrated it as the strongest material ever characterized. Chemical Vapor Deposition (CVD) tech- 

niques have offered an industrially scalable method to synthesize large area continuous polycrystalline 

graphene films. Subsequent nanoindentation experiments reveal the presence of grain boundaries only 

slightly diminishes its strength. Herein, we investigate the probability of failure of grain boundaries in 

graphene through the Finite Element Method (FEM) within the context of the nanoindentation experi- 

ment of a two-grain graphene domain with a single straight grain boundary defined at varying distances 

from the indentation point. We introduce a novel formulation for a Cohesive Zone Model (CZM) within 

membrane elements to admit fracture within the grain boundary that accounts for the nonplanar kine- 

matics of membranes. We examine the transition in failure mechanisms from one of rupture within the 

grain boundary to one of structural instability within the grain. Our analysis reveals three distinct failure 

regions that provide insight into the factors that influence the probability of failure, such as the indenter 

tip curvature and the grain boundary properties. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Graphene is a two-dimensional crystalline material consisting

of a single layer of covalently bonded carbon atoms arranged in a

hexagonal lattice. Single crystal graphene flakes were first isolated

via mechanical exfoliation of graphite crystals ( Novoselov et al.,

2004 ). Since then, graphene has received significant attention due

to its extraordinary electrical, mechanical, and thermal properties.

Nanoindentation experiments of free-standing circular membranes

demonstrated single crystal graphene to be the strongest material

ever characterized. Additionally, graphene’s strength approaches its

intrinsic strength which implies an extremely low density of de-

fects ( Lee et al., 2008 ). 

Mechanical exfoliation produces small flakes of pristine (i.e. free

of defects) graphene, but it is an expensive and time-consuming

manual method with low yield. Therefore many efforts have fo-

cused on the development of industrially scalable methods to syn-

thesize graphene. Chemical Vapor Deposition (CVD) has proven

to be a method capable of growing large area continuous sheets

( Kim et al., 2009; Li et al., 2009a ). However, CVD graphene typ-

ically contains defects such as grain boundaries (line defects) as
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ell as atomic vacancies (point defects). The defects inevitably

ead to a decrease in mechanical strength. Nevertheless, with

roper processing, this reduction in strength of polycrystalline CVD

raphene is minor compared to the strength of pristine single crys-

al graphene ( Lee et al., 2013 ). This observation motivates the de-

elopment of a more complete understanding of the mechanics of

ailure of polycrystalline graphene. 

Atomistic scale simulations represent an important class

f computational methods available to explore the failure of

raphene. These include ab initio methods such as Density Func-

ional Theory (DFT) as well as more phenomenological methods

uch as Molecular Dynamics (MD). Atomic scale simulations have

xplored crucial factors such as: (1) atomic arrangement ( Malola

t al., 2010; Liu et al., 2011; Wei et al., 2012; Zhang et al., 2012 ),

ymmetry ( Yazyev and Louie, 2010; Cao and Yuan, 2012; Zhang

t al., 2013; Han et al., 2014 ), periodicity ( Rasool et al., 2014; Zhang

t al., 2015b ), and degree of misorientation ( Grantab et al., 2010;

iu et al., 2012; Wei et al., 2012; Jhon et al., 2012; 2013; Wu

nd Wei, 2013 ) across a grain boundary; (2) dependency on tem-

erature and strain-rate ( Yi et al., 2013; Zhang et al., 2013; Chen

t al., 2015; Becton et al., 2015 ); (3) development of more realistic

rain structures through algorithms and experimental observations

 Kotakoski and Meyer, 2012; Sha et al., 2014a; Jung et al., 2015 );

4) effect of grain size ( Song et al., 2013; Mortazavi and Cuniberti,

014; Chen et al., 2015; Yang et al., 2015 ); and, (5) the effect of

https://doi.org/10.1016/j.ijsolstr.2018.03.012
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rinkles and out-of-plane distortions on mechanical response ( Liu

nd Yakobson, 2010; Yazyev and Louie, 2010; Malola et al., 2010;

ao and Fang, 2012; Zhang et al., 2012 ). The advantage and appeal

f atomistic simulations is the very rich description of phenom-

na at the level of individual atoms. However, atomistic simula-

ions typically are able to treat only a limited number of atoms

t very high applied strain rates. Another drawback is that the

ength scales of the problem often are inconsistent with experi-

ents. For example, the ratio of the indenter tip to the diameter

f the graphene film in Sha et al. (2014b) MD simulations is in-

onsistent with experiments. This leads to much higher strains at

he membrane periphery and therefore unrealistic boundary con-

itions. 

In addition to atomistic simulations, there are two main classes

f multiscale simulations that probe the mechanical failure of poly-

rystalline materials such as graphene. The first class performs

tudies with atomic scale resolution. These simulations typically

ave the goal of investigating the physics of rupture at the atom-

stic scale. They have the advantage of being able to investigate

ow specific atomic configurations within the grain boundary or

ther defect contribute to the richness of predicted phenomena.

owever, a disadvantage is that atomistic scale simulations are

ery computationally intensive and can only be performed for

ery small domains over very small time periods at extremely

igh strain rates. Examples of this type of multiscale simulation

re Wang and Guo (2013) , Larsson and Samadikhah (2011) and

hare et al. (2007) . 

The second class of multiscale simulations performs studies at

he continuum scale with no explicit atomic scale resolution. This

equires that atomic scale phenomena, such as grain boundary rup-

ure, be described in a continuum formulation that contains the

alient features associated with the failure process. In the context

f grain boundaries, the peak stress and the critical atomic sep-

ration at failure along with the free energy of the grain bound-

ry must be specified. These quantities typically are related via a

raction vs. separation mathematical relationship that captures the

eneral physics of rupture ( Rose et al., 1981 ). The specific form of

he traction vs. separation relationship as well as the peak stress,

ritical atomic separation at failure and the free energy of the grain

oundary are typically determined from atomistic scale simula-

ions. This class of multiscale simulations has the advantage of be-

ng able to investigate the mechanics of failure of a system with

ultiple potential failure paths and mechanisms over large do-

ains and relevant time scales and strain rates. Importantly, this

akes it possible to address the competition between the activa-

ion of various failure mechanisms in a material. The disadvantage

f this class of multiscale models is that the atomic scale infor-

ation is “averaged” into continuum values, so the richness of the

tomic scale configurations is no longer accessible to the model.

urthermore, once the atomistic scale information has been ex-

ressed in continuum values, the simulation loses the atomic scale

esolution. 

The only multiscale models that have been developed to

ate for grain boundary fracture in graphene are applicable

or nanocrystalline structures. Alian and Meguid (2017) pre-

ented Finite Element Method (FEM) simulations of polycrystalline

raphene by meshing the grain boundary with a finite number of

lements whose local properties are defined by MD simulations.

dditionally, Shekhawat and Ritchie (2016) developed a statistical

heory of toughness of polycrystalline graphene based on large-

cale MD simulations, but the domains are also restricted to the

anoscale. 

Griffith (1921) was the first to examine the energetics of frac-

ure based upon the elasticity solution of a crack of finite length in

n infinite plate; the stress field near a crack tip in a linear elastic

olid is formally singular. Barenblatt (1959) and Dugdale (1960) in-
roduced the concept of a narrow region along the prolongation of

he crack tip that exhibits a nonlinear mechanical response in an

ttempt to model the fracture process. The result of the analyses

as to “smear out” the crack tip into a zone within which the co-

esive tractions remain finite. Such a Cohesive Zone Model (CZM)

ffectively removes the stress singularity from the near crack tip

egion. The first implementations of a CZM within the context

f FEM was by Hillerborg et al. (1976) and Needleman (1987) to

odel failure in two-dimensional deformation states. 

Our specimens are much too large to be simulated with atom-

stic scale resolution. Therefore, we choose to develop a multiple

ength scale model that treats the atomic scale phenomena asso-

iated with the rupture of grain boundaries as a traction vs. sepa-

ation relationship. In doing so, we are able to consider the com-

etition between the rupture of grain boundaries and the rupture

ithin the graphene grains. To that end, we develop a CZM that

ccounts for the kinematics of fracture in a membrane and also in-

orporates the traction vs. separation relationship determined from

revious MD simulations by Guin et al. (2016) . 

The goal of this paper is to implement a Cohesive Zone Model

ithin a membrane and use it to model the mechanics of fail-

re during nanoindentation of suspended polycrystalline graphene

onolayers. In particular, we are interested in the competition

etween graphene failure in grain boundaries and failure within

 grain. We treat graphene as a membrane (i.e. negligible bend-

ng stiffness) that can deform arbitrarily both in its local tangent

lane and in its out-of-plane direction. The challenge to implement

he CZM within the context of a membrane element is that dis-

lacements can occur in three dimensions, but the CZM opening

ractions are confined to the local tangent plane of the deformed

raphene. We employ the CZM to simulate a simplified repre-

entation of nanoindentation experiments on free-standing CVD

raphene. The graphene specimen is modeled as a free-standing

ircular membrane with a single straight grain boundary follow-

ng a chord across the circular domain. The distance of the grain

oundary to the indentation point at the center of the membrane

s varied to investigate the transition from intergranular failure to

ntragranular failure. Our results predict the existence of a critical

hreshold distance between the grain boundary and the indenter

ip. Grain boundary fracture occurs if the distance is smaller than

he critical distance. Otherwise, the fracture event occurs within

he grain just as it occurs in single crystal graphene. Since we

re only interested in the incipient failure, dynamic effects are not

onsidered. 

This paper is organized as follows. Section 2 presents the back-

round on the experiments and prior modeling results that mo-

ivates the development of the CZM and the investigation of the

robability of failure in graphene. Section 3 introduces the CZM

nd presents the kinematic framework to define the tractions

nd separations across the interface for a cohesive zone embed-

ed in a membrane undergoing arbitrary deformation in the con-

ext of the Finite Element Method. Section 4 presents the FEM

odel and boundary conditions for the nanoindentation of a two-

rain graphene domain. Section 5 examines the transition in fail-

re mechanisms and criteria that govern the failure of the FEM

imulations. Finally, in Section 6 , we summarize and consider the

otential subsequent applications of this model in CVD graphene

omains that more closely relate to the experimentally observed

tructures. 

. Experimental motivation and background 

The first nanoindentation experiments on single crystal

raphene were performed on free-standing circular mem-

ranes of mechanically exfoliated graphene from bulk graphite

 Lee et al., 2008 ). The attraction between layers of graphene in
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graphite relies on weak Van der Waals forces. These weak forces

are exploited to isolate monoatomic layers of graphene via me-

chanical exfoliation and transfer them onto substrates for testing.

The graphene flakes were transferred to a silicon substrate with

a silicon dioxide epilayer into which had been etched an array of

cylindrical wells of diameter 1 μ m and depth 800 nm patterned

through standard photolithography techniques. The nanoindenter

perpendicularly approached the center of the suspended mem-

brane, identified the surface, and displaced the center of the

membrane into the underlying vacant well while measuring the

displacement of the indenter tip as well as the reaction force of

the graphene onto the indenter tip. The radius of the indenter tip

was measured through Transmission Electron Microscopy (TEM)

and found to be 16.5 nm. Since the radius of the indenter tip

is much smaller than the radius of the suspended membrane,

the indenter can be treated as a point load. This assumption

allows analysis of the resulting force-deflection response with

a semi-empirical cubic relationship to determine the pre-stress

and the mechanical stiffness of the membrane. Additionally, the

maximum fracture load is extracted simply from the maximum

load before failure. A large number of samples were tested to

develop a statistical distribution of the pre-stress, stiffness, and

fracture load. Full details of the experimental methods and results

are described by Lee et al. (2008) . 

Following the experiments, DFT simulations were performed to

calculate the anisotropic nonlinear elastic properties of graphene

under arbitrary in-plane tensile deformations ( Wei et al., 2009 ). A

unit cell of graphene’s lattice was distorted into characteristic de-

formation states through uniaxial and equibiaxial strain. The re-

sults consist of five independent discrete stress-strain responses

from an initial unstrained state through material failure. In an ef-

fort to connect the DFT results to a continuum description, the

existence of a strain energy density potential function was postu-

lated and expanded in a Taylor series to the fifth power in terms

of powers of the Lagrangian strain tensor. The 2 nd Piola-Kirchhoff

stress components were calculated from derivatives of the strain

energy density potential function with corresponding work conju-

gate components of the Lagrangian strain tensor. Upon accounting

for crystal symmetries of the graphene lattice, there are fourteen

independent nonzero elastic constants. These were determined by

least-squares fitting the continuum description to the stress and

strain states calculated via DFT. The resulting continuum nonlinear

anisotropic elastic constitutive relationship thus represents a mul-

tiple length scale model of graphene. 

The resulting higher order constitutive relationship was vali-

dated ( Wei and Kysar, 2012 ) against the nanoindentation experi-

ments through FEM simulations using the commercially available

software ABAQUS/Standard ( Hibbitt et al., 2001 ). The graphene

sheet was modeled using bilinear quadrilateral membrane el-

ements and the indenter tip was treated as a rigid friction-

less sphere. The constitutive relation was implemented through

ABAQUS/Standard using a User Material (UMAT) subroutine. Ex-

cellent correspondence was seen when comparing the force-

deflection response between the experiments and the simulation.

The validation of the 5 th -order nonlinear anisotropic elastic con-

stitutive relationship implies that the failure of pristine graphene

occurs due to a structural instability in the material and not due

to the activation of a defect. This supports the conclusion that

single crystal graphene isolated by the mechanical exfoliation of

graphite is nearly free of defects and that it achieves its theo-

retically predicted maximum stress of 33.5 N/m. After normaliz-

ing the two-dimensional stress measure by graphene’s interatomic

spacing in graphite, 0.335 nm, it can be expressed as an effective

three-dimensional stress measure. This yields an effective value of

100 GPa for the maximum stress, making single crystal graphene

the strongest material ever characterized. 
As a result of this immense strength, it is desirable to develop

ethods of synthesizing large area graphene sheets through an

ndustrially scalable technique. Chemical Vapor Deposition (CVD)

as proven to offer one way to produce large area continuous

heets of graphene ( Kim et al., 2009; Li et al., 2009a ). In CVD, a

ace-centered-cubic (FCC) metal foil is used as a catalyst inside a

ube furnace. In particular, copper foil is primarily used because

t produces large-area continuous monolayer graphene due to its

ow solubility of carbon. The tube furnace is placed under vac-

um and heated to just below the melting point of the copper

oil. After the copper is annealed for some time with a forming

as, a carbon-based gas mixed with hydrogen is introduced. At

his high temperature and due to the catalytic copper substrate,

he carbon disassociates and forms numerous nucleation sites on

he surface of the copper foil. With sufficient time and condi-

ions, the grains grow radially until they collide and “stitch” to-

ether with adjacent grains to cover the entire surface area of the

oil. As a consequence of the surface adsorption growth mecha-

ism of graphene on copper ( Li et al., 2009b ), the crystallographic

rientations of the grains are misaligned. Grain boundaries form

s the growing grains meet each other; they are one-dimensional

efects in the two-dimensional graphene. The grain boundaries

ave been observed through Dark-Field Transmission Electron Mi-

roscopy (DFTEM) ( Huang et al., 2011; Lee et al., 2013 ). The diffrac-

ion patterns of an area allows for the crystallographic orientation

f each grain to be measured. Additionally, although not directly

easured, it is reasonable to expect zero-dimensional defects such

s atomic vacancies or substitutional atoms to be introduced dur-

ng the synthesis. Therefore, graphene synthesized by CVD is poly-

rystalline. Herein, “CVD” and “polycrystalline” will be used inter-

hangeably to refer to graphene grown by CVD. In particular, “poly-

rystalline” graphene will be used to distinguish from the “single

rystal” graphene produced by mechanical exfoliation. 

The density of nucleation sites can be controlled to achieve

ither large-grain ( ∼ 50 μ m) or small-grain ( ∼ 1 μ m) graphene

heets by tuning the growth parameters. The control of the grain

ize allows for the investigation of the mechanical properties of

VD graphene both with and without the presence of grain bound-

ries. With respect to the nanoindentation experiments, large-grain

VD graphene yields a much lower probability of activating a grain

oundary within a suspended region as opposed to the small-grain

VD graphene where the probability is much higher. 

Identical nanoindentation experiments were repeated for both

arge- and small-grain CVD graphene ( Lee et al., 2013 ). A large

umber of samples were tested to develop a statistical distribu-

ion of the results. Histograms for the stiffness and the fracture

oad were compared against the results for single crystal graphene.

hree important conclusions can be drawn from these results. First,

 comparison of the elastic modulus between the three sample

ets showed no statistically significant difference. This implies the

rains and grain boundaries of polycrystalline graphene together

ave the same stiffness as single crystal graphene. Second, a com-

arison of the fracture loads between the single crystal and large-

rain polycrystalline graphene also revealed no statistically sig-

ificant difference, suggesting that any potentially existing zero-

imensional defects within the grains had a sufficiently small den-

ity not to affect the mechanical properties. Thus, the mechani-

al behavior of the grains in polycrystalline graphene are indistin-

uishable to that of single crystal graphene, so the previously cal-

ulated 5 th -order nonlinear anisotropic elastic constitutive relation

an be utilized in modeling the grains of polycrystalline graphene.

hird, a comparison of the fracture loads between the single crystal

nd small-grain polycrystalline graphene reveals that small-grain

raphene has a lower breaking force. Consequently, this diminution

n strength can be attributed to the grain boundaries. While there

s a compromise in strength, this decrease is relatively small ( ∼ 5%)
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Fig. 1. Traction vs. separation response. T n from Eq. (3) is plotted with U t = 0 from 

a point of zero opening to complete decohesion, defined as ten times δn . 
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nd still motivates the use of CVD to produce strong graphene

lms. 

. Membrane-based Cohesive Zone Model 

The objective is to develop a CZM to model the rupture of grain

oundaries in CVD graphene within an FEM framework. Typically,

 CZM is implemented in FEM for two-dimensional deformation

tates, such as plane stress, plane strain, and axisymmetric defor-

ation. The challenge here is to implement a CZM within a mem-

rane element where displacements can occur in three dimensions

ut the opening tractions of the CZM are constrained to be within

he local tangent plane of the deformed membrane. CZMs are de-

ned by a traction vs. separation relation. Barenblatt (1959) al-

uded to an expected general form of this relationship which is

imilar in form to the one seen in Fig. 1 . The key feature of this

elationship is that the traction reaches a maximum value, σ m 

, at

ome characteristic distance across the interface, δn , beyond which

s the onset of failure. Needleman proposed a specific functional

orm of a constitutive relation for an interface for FEM investiga-

ions purely for analytical convenience in the form of a polynomial

otential function based on maximum tractions and characteristic

istances for each degree of freedom involved. By taking deriva-

ives of the potential function with respect to each displacement

egree of freedom, the traction vs. separation relationships can be

ecovered. At minimum, for a traction vs. separation description,

he following properties are required for each displacement de-

ree of freedom: (i) a characteristic distance; (ii) a maximum trac-

ion; and, (iii) a fracture energy, represented by the area under the

raction vs. separation curve. Typically, this information is gleaned

rom atomistic scale simulations. 

.1. Traction vs. separation relationship 

Xu and Needleman (1993) later proposed an exponential form

f an interfacial potential function for a two-dimensional deforma-

ion state. For analytical convenience, we have chosen to use this

orm of the potential function in our CZM investigations, which is
iven by 

= φn + φn e 
−

U n 

δn 

⎡ 

⎣ 

(
1 − r + 

U n 

δn 

)(
1 − q 

r − 1 

)

−
(

q + 

(
r − q 

r − 1 

)
U n 

δn 

)
e 

−
(

U t 

δt 

)2 ⎤ 

⎦ , (1) 

here φn = σm 

eδn is the work of normal separation, σ m 

is the

aximum stress, δn is the characteristic normal distance, δt is

he characteristic tangential distance, U n and U t are the normal

nd tangential separations, q = φt / φn is the normal-shear coupling

here φt is the work of tangential separation, and r = U 

∗
n / δn is the

ormal opening under pure shear where U 

∗
n is the normal distance

fter complete separation with zero normal traction. 

For the current investigation, we simplify this model by consid-

ring zero normal opening under pure shear, r = 0 , and that the

ork of tangential separation is equivalent to the work of normal

eparation, q = 1 . This yields the simplified potential function 

φ| r=0 , q =1 = φn − φn e 
−

U n 

δn 

(
1 + 

U n 

δn 

)
e 

−
(

U t 

δt 

)2 

. (2)

The interfacial normal, T n , and tangential, T t , tractions are de-

ermined by taking derivatives of φ in Eq. (2) with respect to U n 

nd U t , respectively, and yields 

T n | r=0 , q =1 = 

∂φ

∂U n 
= −φn 

δn 
e 

−
U n 

δn 

(
U n 

δn 

)
e 

−
(

U t 

δt 

)2 

T t | r=0 , q =1 = 

∂φ

∂U t 
= −

(
2 φn 

δt 

)
U t 

δt 

(
1 + 

U n 

δn 

)
e 

−
U n 

δn e 
−
(

U t 

δt 

)2 

. (3) 

This relationship is reduced to three independent material pa-

ameters. For the current investigation these are defined as σm 

=
0 . 5 ± 0 . 5 N/m , δn = 0 . 06 ± 0 . 005 nm , and δt = 0 . 06 ± 0 . 005 nm .

ogether these three parameters along with the functional form

f the traction vs. separation relationship also define the frac-

ure energy, � = 2 . 1 ± 0 . 2 eV/ ̊A. These values were defined from

D simulations performed by Guin et al. (2016) on experimen-

ally observed CVD graphene grain boundaries ( Huang et al., 2011 ).

uin et al. (2016) is to date the only researcher to extract traction

s. separation relationships for graphene grain boundaries from

tomistic scale simulations of grain boundary rupture. Their results

or the peak traction at failure are consistent with other atomistic

imulations, as reviewed by Zhang et al. (2015a) , which range from

.7 N/m to 33.5 N/m. 

The concept of a cohesive zone implies a high angle grain

oundary in which the crystal defects within the grain boundary

re so closely spaced that they can be treated with the continuum

ssumption. However, as discussed by Guin et al. (2016) , while

igh angle grain boundaries can satisfy these conditions, the de-

ect structures in low angle grain boundaries can be spaced so far

part that the continuum approximation of a grain boundary does

ot hold. Specifically, in our case, we intend to model high angle

rain boundaries such that the average distance between crystal

efects within the grain boundary is much smaller than the radius

f the indenter tip, so that the continuum assumption is valid. 

Due to the axisymmetry of the nanoindentation experiment,

he suspended CVD graphene membrane is primarily under a state

f equibiaxial stress under and near the spherical indenter tip. Ac-

ordingly, we expect the failure mode in the grain boundary, and

ence the CZM, to be predominantly due to normal traction. There-

ore, in Fig. 1 , T n from Eq. (3) is plotted assuming zero tangential

eparation, U t = 0 , to gain insight into failure of the CZM within

he context of the nanoindentation experiments. 



236 C.S. DiMarco et al. / International Journal of Solids and Structures 143 (2018) 232–244 

Fig. 2. Insertion of a cohesive zone element within a bilinear quadrilateral element. (a) A single four-node quadrilateral element prior to cohesive element insertion. The 

dotted line represents a bisector of the element for the insertion of a cohesive zone element. (b) A three-element representation and connectivity of a zero thickness 

four-node cohesive zone element between two quadrilateral elements. 

Fig. 3. Kinematics of a two-dimensional four-node cohesive zone element. A schematic of a single element from its unstrained reference state (on the left) to a general 

deformation state (on the right). 
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3.2. Two-dimensional CZM kinematics 

First, let us examine the implementation of a CZM in a simpler

two-dimensional example to gain insight into the formulation of

the kinematics. For this discussion, we utilize a subscript to iden-

tify the degree of freedom and a superscript to identify the node

number for the variables involved. Consider, as shown in Fig. 2 a, a

single four-node bilinear quadrilateral plane strain element. A co-

hesive zone element can be realized through a simple bisection of

this element and insertion of four interface nodes to define the

connectivity of the cohesive zone element. This results in a three-

element arrangement with the cohesive zone element encased be-

tween two adjacent plane strain elements as shown in Fig. 2 b. 

The following kinematic formulation follows directly from

Becker (1988) . A general two-dimensional deformation state of a

cohesive zone element has two displacement degrees of freedom

across the interface: a normal, U n , and a tangential, U t , opening.

As shown on the left in Fig. 3 , in an unstrained reference state,

the cohesive zone element is defined as a one-dimensional line

with a finite initial length, l o , and an initial width (or opening),

w 

o , of zero. As is shown by the vertical dotted lines in Fig. 3 , the

cohesive zone interface is divided into two sides, α and β , such

that each side spans half the length of the interface. The loca-

tion of the two nodes on either side are initially coincident, and

both U n and U t are defined with respect to the nodal positions for

each side. As the cohesive zone element stretches into a general

two-dimensional deformation state, shown on the right in Fig. 3 ,

a Cartesian local coordinate system ( n , t ) is defined with respect

to the interface in order to define the normal, n , and tangential,

t , vector directions. In this simple two-dimensional example, the
nterface, indicated in Fig. 3 , can easily be defined by utilizing the

ector that connects the midpoint between nodes 3 and 5 and the

idpoint between nodes 4 and 6. t is defined to be collinear with

he interface. Subsequently, n is readily defined perpendicular to t

ollowing the right-hand rule from n to t . Based on ( n , t ) and the

odal positions, the normal and tangential openings are readily de-

ermined for both sides of the cohesive zone element: U αn and U αt 

or side α and U βn and U βt for side β . These are also expressed

t quadrature points by linear interpolation with two-point Gauss

uadrature. Subsequently, T n and T t across the interface are eval-

ated through Eq. (3) for both side α and β and then extrapo-

ated onto each of the nodes as forces. As an example, Fig. 3 ex-

licitly displays the separation for side β and the corresponding

odal forces at node 3, denoted as F 3 
βn 

and F 3 
βt 

. 

.3. Three-dimensional membrane-based CZM kinematics 

Since we are modeling a cohesive zone within the context of

anoindentation experiments of polycrystalline graphene, our goal

s to allow for a displacement discontinuity analogous to the bi-

inear quadrilateral element in Fig. 2 a, while generalizing the kine-

atics of the element to be a membrane with three degrees of

reedom at each node. The main challenge is that the entire mem-

rane element itself is able to deform to become non-planar. How-

ver, we note that the horizontal dashed line representing the in-

ipient displacement discontinuity in Fig. 2 a remains straight even

fter deformation occurs as long as the vertical sides of the el-

ment remain linear. Therefore we choose to apply constraints

uch that the edge deformations across the interface of the three-

lement representation seen in Fig. 2 b are the same as the origi-
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Fig. 4. Multiple Point Constraint of the cohesive zone nodes within the three-element representation in a general three-dimensional deformation state. Two bilinear four- 

node quadrilateral membrane elements connected by a four-node cohesive zone element. The cohesive zone nodes are represented by nodes 3-6, the lines to which they are 

constrained are indicated by the dotted lines, and the nodal constraint is represented by the sets of parallel solid lines that border the cohesive element nodes. On the right, 

this linear MPC is generalized for a single arbitrary cohesive zone node. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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al single-element representation (i.e. nodes 1, 3, 5, and 7 remain

ollinear and nodes 2, 4, 6, and 8 remain collinear). In other words,

he three-element representation is formulated such that the edges

cross the cohesive zone remain bilinear. Additionally, it is impor-

ant to note that without a constraint on the cohesive element

odes, the cohesive element is under-constrained. Equivalent to

embrane elements, the membrane-based cohesive element can

nly withstand and transmit in-plane forces. In order to prevent

onphysical sliding of the cohesive zone in the local out-of-plane

irection, a kinematic constraint is required. One way membrane

tructures achieve this is by including a small fictitious damping

erm which is removed upon reaching a final state to determine

he full static solution ( Taylor et al., 2005 ). While this method is

ot employed within the CZM, it is reasonable to expect it to yield

imilar results. 

We apply this bilinear constraint numerically within

BAQUS/Standard by using a Multiple Point Constraint (MPC)

 Hibbitt et al., 2001 ). It is displayed graphically in Fig. 4 with

espect to a general deformation state of the three-element rep-

esentation. The MPC restricts nodes 3 and 5 each to remain

n a straight line between nodes 1 and 7, and restricts nodes 4

nd 6 each to remain in a straight line between nodes 2 and 8.

hile this MPC constraint would consequently limit the potential

or a tangential opening across the interface, we do not expect

ignificant tangential opening because (i) membrane elements

annot withstand significant in-plane shear prior to buckling and

ii) the nanoindentation experiment subjects the membrane to an

pproximately equibiaxial stress state. 

In general, as shown on the right side of Fig. 4 , the MPC con-

ists of constraining a single cohesive zone node, n coh , on a line

efined by two adjacent nodes, n adj 1 and n adj 2 . The line defined

y the two adjacent nodes will be referred to as the constraint

ine . This three-dimensional linear MPC is a parametric extension

f a two-dimensional linear constraint provided as an example by

BAQUS/Standard ( Hibbitt et al., 2001 ). In the example, a MPC re-

tricts a single degree of freedom of a node by eliminating that

ode’s degree of freedom by making it a function of other nodal

egrees of freedom involved in the constraint. In two-dimensional

pace ( x, y ), a linear MPC is implemented numerically by defining

 constraint equation based on nodal displacement degrees of free-

om, u i . This is derived by equating the slope defined by n coh and

 

adj 1 to the slope defined by n adj 1 and n adj 2 , which is given by 

x coh 
y − x adj1 

y 

x coh 
x − x adj1 

x 

= 

x adj2 
y − x adj1 

y 

x adj2 
x − x adj1 

x 

, (4) 
here x i are the current nodal coordinates. Note that x i = X i + u i ,

here X i are the reference nodal coordinates. The plane within

hich the line is defined will be referred to as the constraint plane .

he resulting constraint equation, f , is given by 

f (u 

coh 
x , u 

coh 
y , u 

adj1 
x , u 

adj1 
y , u 

adj2 
x , u 

adj2 
y ) 

= (x coh 
y − x adj1 

y )(x adj2 
x − x adj1 

x ) − (x adj2 
y − x adj1 

y )(x coh 
x − x adj1 

x ) 

= 0 (5) 

y bringing all of the terms in Eq. (4) to one side so that the ex-

ression is equal to zero. Derivatives of Eq. (5) are taken with re-

pect to each nodal u i to determine the functional relationship of

he degree of freedom to be eliminated to the remaining degrees

f freedom. 

Constraining a node with two degrees of freedom onto a line

equires a single degree of freedom to be constrained. In Eq. (5) ,

ither the x or the y degree of freedom of n coh could be con-

trained simply by changing the order in which the derivatives are

aken. It is most efficient to constrain the degree of freedom that

as the shortest path to satisfying the MPC. This is easily deter-

ined by identifying onto which coordinate axis the projection of

he constraint line is minimized. This is illustrated in Fig. 5 a and

he notation C i (n coh 
dof 

) is introduced to define the constraint used,

here the subscript i refers to the constraint plane , defined by the

utward normal vector, and the function input specifies the con-

trained nodal degree of freedom. Additionally, the specified con-

traint plane indicates the corresponding constraint equation . For

xample, considering the ( x, y ) plane, if the projection of the con-

traint line is minimized on the x -axis, then constraining the x de-

ree of freedom of n coh yields the shortest path to satisfying the

PC (i.e. C z (n coh 
x ) ); otherwise, the opposite would be true and the

 degree of freedom of n coh would be constrained (i.e. C z (n coh 
y ) ). 

In three-dimensional space ( x, y, z ), we cannot as readily de-

ne the slope of a line with single expression, so a set of para-

etric equations are necessary. Additionally, to constrain a node

ith three degrees of freedom onto a line, two degrees of freedom

ust be constrained. Therefore, we extend the two-dimensional

PC formulation by utilizing a pair of constraint equations along

ith two constraint planes . Again, the two degrees of freedom to

onstrain are identified by determining which two global unit vec-

ors minimize the projection of the constraint line vector. Lastly, as

llustrated in Fig. 5 , there are three possible constraint planes to

onsider. The two constraint planes must be carefully chosen be-

ause once a degree of freedom is constrained it cannot be used in

ther calculations for that iteration of the simulation. Clearly, one
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Fig. 5. Three-dimensional linear MPC constraint planes, constraint lines , and constrained degrees of freedom. These frames illustrate the three constraint planes onto which 

the constraint line between n adj 1 and n adj 2 is projected: (a) C z , (b) C y , and (c) C x . 

Fig. 6. Kinematics of a three-dimensional four-node membrane-based cohesive zone element. A schematic of the reference state (on the left) of the undeformed four-node 

cohesive zone element to a general out-of-plane deformation state (on the right). 
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Cartesian unit vector for each of the two constraint planes must

correspond with each constrained degree of freedom. Therefore,

the second Cartesian unit vector for both constraint planes is the

same and equivalent to the Cartesian unit vector that maximizes

the projection of the constraint line vector. 

Once the two constraint planes and the two constrained degrees

of freedom are identified, the two-dimensional constraint equation

from Eq. (5) can be generalized to 

f 
(
u 

coh 
dof 1 , u 

coh 
dof 2 , u 

adj1 

dof 1 
, u 

adj1 

dof 2 
, u 

adj2 

dof 1 
, u 

adj2 

dof 2 

)

= 

(
x coh 

dof 2 − x adj1 

dof 2 

)(
x adj2 

dof 1 
− x adj1 

dof 1 

)

−
(
x adj2 

dof 2 
− x adj1 

dof 2 

)(
x coh 

dof 1 − x adj1 

dof 1 

)
= 0 (6)

and applied for each constraint plane , where the nodal degrees of

freedom involved and the order of the derivatives are selected ac-

cordingly. 

Once the kinematics of deformation have been resolved, the

primary remaining challenge with implementation is defining U n 

and U t for a membrane-based cohesive zone element. Unlike the

two-dimensional case, the four cohesive zone nodes do not remain

coplanar for an arbitrary strained state. We must account for both

stretching, as well as twisting, in defining U n and U t across the

interface. As can be seen on the left in Fig. 6 , the undeformed ref-

erence state of the cohesive zone element within a membrane ele-

ment is identical to the two-dimensional example from Fig. 3 . Once

again, the interface is divided into two sides, α and β , and sepa-

rations are to be defined for each side of the element. For a gen-

eral out-of-plane deformation state of the cohesive zone element,

on the right in Fig. 6 , it is immediately apparent that at least two
artesian local coordinate systems are required, one for each side

f the element, to account for the twisting of the element along

he interface axis. As shown in Fig. 6 , ( n α, t , b α) is defined for side

and ( n β , t , b β ) is defined for side β . Synonymous to the two-

imensional example, the unit tangential vector, t , is collinear with

nterface and is shared between both local coordinate systems. The

nit outward normal vector for side α, b α, is defined by the nor-

alized cross product between v 6 , 4 (the vector from nodes 6–4)

nd t . Similarly, the unit outward normal vector for side β , b β , is

efined by the normalized cross product between v 5 , 3 (the vector

rom nodes 5–3) and t . The calculations for b α and b β are given

y 

 α = 

v 6 , 4 × t 

‖ v 6 , 4 × t ‖ 

b β = 

v 5 , 3 × t 

‖ v 5 , 3 × t ‖ 

. (7)

Lastly, the unit normal vectors for each side, n α and n β , are

efined as the normalized cross product between t and the corre-

ponding unit outward normal vector, b α and b β , and are given by

 α = t × b α n β = t × b β (8)

U αn , U αt , U βn , and U βt , are determined from the nodal displace-

ent vectors for each side with respect to the corresponding local

oordinate system. Subsequently, the tractions and nodal forces are

etermined in the same manner as the two-dimensional example. 

There still persists a complication. The planes within which the

nterfacial tractions are determined, defined by b α and b β , do not

oincide with the local tangent plane at each cohesive zone node

n the corresponding side. This is a result of twisting of the ele-

ent. The forces must remain in-plane when being transmitted to
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Fig. 7. Simplification of the domain of a suspended polycrystalline graphene membrane. (a) A false-colored DFTEM image of an experimentally observed membrane. Each 

color corresponds to a graphene grain of which the relative orientation is measured from observing the diffraction pattern. (b) The exact representation of (a) in an FEM 

domain. (c) A simplified representation with a single straight grain boundary and aligned orientations. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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he adjacent membrane elements across the cohesive zone. Thus,

he calculated nodal tractions are projected onto the local tangent

lane for each node. As long as sufficiently small elements are cho-

en along the grain boundary, the elemental twist will be minimal

nd the error introduced from this projection will be negligible. 

. Finite Element Method simulations 

We implement the membrane-based Cohesive Zone Model

n an FEM simulation of the nanoindentation of freely-

uspended circular membranes of polycrystalline graphene using

BAQUS/Standard ( Hibbitt et al., 2001 ). First, we consider the

omplexities involved with the experiment based on observations

f suspended membranes ( Lee et al., 2013 ). One such suspended

embrane imaged with DFTEM is seen in Fig 7 a. DFTEM and

iffraction patterns of suspended membranes reveal that the grain

oundaries are not straight and can even be jagged depending on

he grain growth morphology and relative orientation to adjacent

rains. Depending on the average grain size of the CVD graphene

rowth, a suspended circular membrane of a given diameter will

ave a correlated number of grains (and grain boundaries) in its

omain. This change in density of grain boundaries will affect

he probability of the indenter tip to encounter and activate

ailure along a grain boundary and will, therefore, influence the

robability of failure. 

Huang et al. (2011) performed atomic scale imaging of CVD

raphene grain boundaries through High-Resolution TEM (HRTEM)

hat revealed three additional important details: (i) significant non-

inearity of grain boundary paths, (ii) adjacent grains typically have

symmetric tilt in crystallographic orientation, and (iii) the atomic

onfiguration of the grain boundaries is atomically complex, com-

osed of non-periodic sequences of primarily pentagonal, hexago-

al, and heptagonal rings. In Fig. 7 , we show how the domain is

implified for these initial investigations from its exact experimen-

ally observed grain structure in Fig. 7 a to a circle with a chord

o represent a two-grain membrane and a single grain boundary,

espectively, in Fig. 7 c. 

The simplified domain shown in Fig. 7 c is used as a model that

ontains the minimum salient features necessary to study the fail-

re mechanisms of graphene. A perspective view of the FEM model

s shown in Fig. 8 b. The diameter of the membrane is φmem 

= 1 μm

o match the experiments. The distance, d , is defined as the per-

endicular length from the chord to the center of the circular do-

ain. We assume there will be some critical threshold distance, d c ,

or which failure will occur within the grain boundary (i.e. d < d c ),

hereas failure will occur within the grain for d > d c . As a result,
he domain has two grains and for simplicity we specify the crys-

allographic orientation of each grain to be the same for these

nitial simulations. The crystallographic orientation of graphene is

ommonly defined by two unit vectors that are aligned with the

igzag and the armchair directions within the lattices. The zigzag

nd armchair directions can be expressed, respectively, with the

iller-Bravais notation as [11 ̄2 0] and [1 ̄1 00] , as seen in Fig. 8 a.

he grain boundary is arranged parallel to the armchair direction.

 is varied from 0 nm to 50 nm in two ranges: (i) 1 nm increments

hen d is close to the indenter tip to resolve failure loads influ-

nced by contact between the tip and the grain boundary, and (ii)

 nm increments when d is further away to identify the transition

n failure mechanism from one of grain boundary rupture to one

f structural instability. 

The indenter tip is positioned immediately above the center of

he membrane and is modeled as a rigid sphere of radius, r tip =
6 . 5 nm , corresponding to the radius of the indenter tip used in

xperiments ( Lee et al., 2008 ). The fracture load experimentally de-

ends on r tip , but for simplicity we do not vary r tip in these sim-

lations because we are focused on identifying the general failure

haracteristics of polycrystalline graphene. 

The suspended membrane is meshed with bilinear quadrilateral

embrane elements with an element edge length ranging from

0 nm far away from the grain boundary to 1 nm at the grain

oundary and the contact zone beneath the indenter tip. There-

ore, the length of the cohesive zone elements is l o = 1 nm . The

embrane elements along the grain boundary, adjacent to the co-

esive elements, are constructed to be square to minimize mesh

ependencies. 

The suspended membrane is subject to a radial pre-stress of

.335 N/m at the periphery prior to indentation to replicate the

onditions measured in experiments ( Lee et al., 2008 ). Subse-

uently, the membrane periphery is subject to a zero displace-

ent boundary condition during the indentation. The bottom and

op surfaces of the membrane, excluding the top surface area in

ontact with the indenter tip, are traction-free. The contact area

s subject to a displacement boundary condition that depends on

he displacement control of the indenter into the center of the

op membrane surface. The contact is modeled as frictionless. We

pecify a displacement rate of the indenter tip such that quasistatic

onditions hold. 

The mechanical response of each grain is modeled with the

xperimentally-validated 5 th -order nonlinear anisotropic elastic 

onstitutive relation described previously ( Wei et al., 2009; Wei

nd Kysar, 2012 ). The grain boundary is modeled with the CZM
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Fig. 8. (a) The crystal structure of a single graphene grain with material orientation. The black dots represent the carbon atoms and the straight black lines represent the 

covalent bonds between atoms. (b) A perspective view of the problem domain of a suspended circular two-grain graphene membrane with a single straight grain boundary 

subject to nanoindentation. The bottom center of the figure provides a magnified view of the center of the membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Failure analysis for a suspended circular graphene membrane subject to a 

16.5 nm radius indenter tip with a single straight grain boundary at varying dis- 

tances, d , from the indentation point. The force beneath the indenter tip at the mo- 

ment of failure, F c , is plotted as function of grain boundary distance to the indenter 

tip, d . 
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proposed in Section 3.3 using the traction vs. separation rela-

tionship and material properties described in Section 3.1 . These

properties are implemented in ABAQUS/Standard as a User Mate-

rial (UMAT) and a User Element (UEL), respectfully ( Hibbitt et al.,

2001 ). 

There are two additional numerical controls that we specify for

the simulation. As justified in Section 3.3 , a linear MPC is used

along the grain boundary to ensure the cohesive zone nodes are

appropriately constrained. Additionally, ABAQUS/Standard contact

controls are utilized to model the interaction between the inden-

ter tip and the center of the suspended membrane with a state-

based tracking algorithm for finite-sliding ( Hibbitt et al., 2001 ). We

apply displacement control to the indenter tip perpendicular into

the center of the membrane at sufficiently small increments such

that convergence is achieved. The solver is monitored until soft-

ening occurs, thus indicating that failure has occurred either due

to structural instability (cf. Wei and Kysar, 2012 ) within a grain or

rupture within the grain boundary. We account for finite deforma-

tion kinematics in the simulations. 

5. Results and discussion 

The onset and mode of failure is identified for each d and the

corresponding critical fracture load, F c , (the reaction force on the

indenter tip at fracture) is recorded. In Fig. 9 , we plot d vs. F c to

visualize the transition in failure modes and gain insight into fac-

tors that may influence the probability of failure. To ensure that

our numerical implementation is self-consistent, we verified that

the normal traction within the grain boundary at incipient failure

is equal to the maximum stress of the traction vs. separation rela-

tionship. 

There are three distinct regions to consider in Fig. 9 that we

label as regions I, II, and III. In region I, the grain boundary is in

contact with the indenter tip at the time of failure; the relationship

between d and F c is nonlinear and failure occurs within the grain

boundary. As d increases into region II, the relationship between

d and F c becomes linear, but failure still occurs within the grain

boundary. The transition from region II to III marks the critical dis-

tance, d c , where the failure mechanism shifts from grain boundary

failure to one of structural instability within the grain. In region III,

the value of F c plateaus and failure occurs at a constant maximum

fracture load independent of d . 
The transition in failure mechanism between regions II and III

hat occurs at about 30 nm < d c < 35 nm is for the specified inden-

er tip radius and CZM parameters. As depicted in Fig. 9 , for d < d c ,

he grain boundary traction reaches its maximum strength prior to

he point where graphene reaches its intrinsic strength. The on-

et of failure within the grain boundary is identified by the cohe-

ive zone element that first reaches its maximum stress, σ m 

, as

efined by Eq. (3) and shown in Fig. 1 . This point represents the

oment before void nucleation within the grain boundary. Other-

ise, for d > d c , the material within the graphene grain reaches its

eak strength and failure occurs due to a structural instability. The

ritical force for failure becomes constant because with increasing

 the tractions in the grain boundary will only decrease and the

rain will always rupture at the same fracture load. 

Let us examine each of the three regions of Fig. 9 in more depth

nd consider the dependent parameters that influence the criti-

al fracture load. Understanding these features is crucial for be-
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inning to deconstruct the probability of failure of polycrystalline

raphene. 

In region I, the relationship between d and F c is nonlinear for

 � r tip /2. This response is likely due to contact effects between the

ndenter tip and the grain boundary at the time of failure. Consider

he radius of contact between the indenter tip and the suspended

embrane. The critical indentation depth, δc , of pristine graphene

t rupture for an indenter radius of r tip = 16 . 5 nm and a mem-

rane diameter of 1 μm is δc = 104 nm . With the introduction of

 grain boundary in close proximity to the indenter tip, the inden-

ation depth is less due to activation of the grain boundary defect

 δc < 70 nm). Therefore, only a fraction of the tip radius is in con-

act with the membrane upon failure. The distance beyond which

he grain boundary is no longer in contact with the indenter tip

t failure is determined to be d = 8 ± 1 nm . Note that this value is

nly slightly lower than r tip /2. It is reasonable to hypothesize that

he nonlinearity in region I depends on the contact area between

he indenter and the grain boundary and, hence, is a function of

 tip , φmem 

, and δc . In turn, δc is dependent on the properties of the

rain boundary and grain. 

Additionally, nanoindentation experiments on single crystal

raphene have demonstrated that a larger indenter radius leads to

 larger F c , and therefore an increase in δc ( Lee et al., 2008 ). Thus,

 larger radius tip would result in an increased contact area upon

ailure. Hence, it is reasonable to suspect that the transition dis-

ance from region I to II would also increase with larger r tip under

onstant material properties. 

In region II, there is clearly a linear relationship between d and

 c . The grain boundary is at a sufficient distance from the inden-

er tip in that it is unaware of the tip’s finite curvature and can

e treated as a point load. Therefore, it is reasonable to expect F c 
o be independent of r tip . This hypothesis is supported by consid-

ring stress as a function of radial position upon failure of pristine

raphene. Wei and Kysar (2012) showed that for a similar domain

nd boundary conditions, but in the absence of a grain boundary,

here is a fairly linear relationship between stress and radial po-

ition for distances between 10 nm and 30 nm. It is reasonable to

uspect that this linear relationship would translate to a linear re-

ationship between F c (i.e. the grain boundary reaching σ m 

) and d

ithin region II. 

The behavior in region III becomes synonymous to the failure

f a single crystal graphene membrane. The critical failure load

ecomes constant at F c = 1508 nN for d c < d where failure occurs

ithin the grain due to a structural instability. The membrane fail-

re is essentially unaware of the presence of the grain boundary.

herefore, F c becomes independent of d in this region. As a result,

he transition between failure mechanisms occurs abruptly with

ncreasing d . Again, we know from experimental observations that

 c in region III is dependent on r tip ( Lee et al., 2008 ). While the

reaking force will remain constant with increasing d, F c will in-

rease with r tip , and vice versa. For a specified F c , as r tip increases,

he contact area between the indenter and the membrane also in-

reases. As a result, the force on the indenter is spread out over

 larger area and this translates to a lower stress in the film (i.e.

orce/area). Therefore, a greater F c is required to reach the critical

reaking strength of the membrane to cause failure. 

Fig. 10 shows the interplay of the Cauchy stress field with the

rain boundary and the indenter tip for each of the three failure

egions. The grain boundary in each frame is identified by the ver-

ical black line. From left to right, each column represents the re-

ults at a particular grain boundary distance, d = 0 nm , d = 20 nm ,

nd d = 45 nm , respectively. The top row of frames shows the

auchy stress field at the onset of failure. In Fig. 10 a and b, fail-

re occurs within the grain boundary and in Fig. 10 c, failure occurs

ithin the grain. The bottom row of frames shows the qualitative

evelopment of the stress field a few time increments after fail-
re initiation to demonstrate that failure does indeed occur on the

rain boundary. Fig. 10 a ′ and b ′ reveal stress concentrations at the

rack tip as the crack propagates. In Fig. 10 c ′ , the hexagonal sym-

etry of the graphene crystal lattice is evident due to the six-fold

ymmetry of the Cauchy stress immediately beneath the indenter

ip. 

Overall, it is reasonable to suspect these three failure regions to

xist for any variation in the indenter radius, the material prop-

rties within each grain, or the cohesive zone properties defined

long the grain boundary. The only changes we expect are shifts

n the critical distances that separate regions and the values of the

ritical forces. 

In order to gain further confidence in the implementation and

peration of the membrane-based CZM, we allow some simula-

ions to progress beyond the point of void nucleation and con-

inue through crack propagation. It is important to note that dy-

amic effects are not yet taken into account in these simulations,

o the stress contours past failure serve only as qualitative obser-

ations. In Fig. 11 , we show the maximum in-plane Cauchy stress

tate evolution immediately beneath the indenter tip before, dur-

ng, and after failure for d = 0 (i.e. grain boundary directly beneath

he indenter tip). The grain boundary is shown as being vertical

nd centered in each frame. The material properties and orienta-

ion, the specimen configuration, and the mechanical loading are

onsistent with mirror symmetry about grain boundary so we ex-

ect the crack that develops along the grain boundary to be Mode

. Magnified views of Fig. 11 a–d are provided in Fig. 11 a ′ –d 

′ to

how clearer details of the stress field. 

Fig. 11 a and a ′ shows the stress state immediately before void

ucleation. This frame reveals clear mirror symmetry about the

rain boundary, as well as stress concentration since the mem-

rane is near rupture. Fig. 11 b and b ′ identifies the onset of grain

oundary failure as the indenter tip advances an additional incre-

ent into the membrane. At the very center of the frame, soften-

ng of the stress can be seen, indicating that some portions of the

rain boundary have exceeded the critical displacement, δn , and a

oid has nucleated. 

Fig. 11 c and c ′ reveals the initial stages of crack growth. The

tress contours here provide a clear picture of the commonly

nown Griffith crack: a finite of length crack with two stress con-

entrated tips advancing vertically from the point of void nucle-

tion. Finally, Fig. 11 d–f shows select stages as the indenter tip

ontinues to depress into the circular membrane. The cohesive

one (or grain boundary) clearly “unzips” (the crack tip advances)

nd the indenter tip can be seen protruding through the open-

ng. As the interfacial separation increases to ten times the criti-

al opening, δn , the interface becomes approximately traction-free

i.e. a free surface). This stable crack growth provides qualitative

vidence that the CZM is properly implemented and numerically

table. 

Our results show that failure is dominated by the details of

he stress concentrations near the tip. In this region, the mem-

rane is made taut due to the loading of the indenter tip. While

his may increase the depth of indentation for a given force, it

ill not affect the details of the stress concentration. Therefore,

e do not expect the presence of ripples or wrinkles in the film

o affect the force at which failure occurs. An additional impor-

ant observation from these simulations is that the failure analysis

or graphene with this set of CZM parameters would not be sig-

ificantly affected by graphene’s material anisotropy if a different

rystallographic orientation of the graphene were employed. The

anoindentation of a circular suspended membrane imposes an ap-

roximately equibiaxial stress state in the region below the inden-

er tip. Wei et al. (2009) showed that graphene’s material response

oes not become anisotropic until ∼ 15% strain. For these CZM pa-

ameters, the grain boundary ruptures at ∼ 7% strain, well below
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Fig. 10. Maximum in-plane Cauchy stress field for selected grain boundary distances within each failure region. The grain boundary within each frame is indicated by the 

vertical black line. (a)–(c) The onset of failure for grain boundary distances of 0 nm, 20 nm, and 45 nm, respectively. (a ′ )–(c ′ ) A few increments after the onset of failure at 

the corresponding grain boundary distances (scale ∼ 20 nm). 

Fig. 11. Maximum in-plane Cauchy stress for a grain boundary immediately beneath the indenter tip. (a)–(f) Characteristic stages of a grain boundary at the moments before, 

during, and after failure with a 16.5 nm radius indenter tip (scale ∼ 10 nm). (a ′ )–(d ′ ) Select magnified views for better resolution (scale ∼ 5 nm). 
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the threshold at which graphene begins to exhibit anisotropic be-

havior. Hence, these results would hold for any variety of aligned

or mismatched grain orientations and the threshold distance, d c ,

that defines the transition between failure modes can be consid-

ered the threshold radius, instead. However, if the strength of the

grain boundary is very close to that of the pristine material, then

mechanical anisotropy may affect the results, although we expect

this to be a second-order effect. 

6. Conclusions 

We have introduced the formulation of a Cohesive Zone Model

(CZM) for a membrane element. The details of the kinematics

of the CZM were proposed for determining the separation across

the interface. To account for the under-constrained nature of a

two-dimensional element spanning three-dimensional space, we
pplied numerical controls through a Multiple Point Constraint

MPC). The MPC requires the cohesive zone element together with

ts two adjacent membrane elements to maintain bilinearity as a

hole. 

The traction vs. separation relationship that governs the CZM

s based on MD simulations of experimentally observed de-

ect structures in graphene grain boundaries. As discussed by

uin et al. (2016) , a typical high angle grain boundary consists of a

ontinuous defect structure. A low angle grain boundary contains

eriodic defects separated by regions of perfect lattice (i.e. not a

ontinuous defect structure). Consequently, our model is not ex-

ected to model low angle grain boundaries adequately. 

We implemented the membrane-based CZM within the context

f a suspended circular graphene bicrystal subject to nanoinden-

ation. ABAQUS/Standard FEM software was utilized to model the

anoindentation experiment. The model identifies two potential
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ailure modes: (i) grain boundary rupture due to void nucleation

ithin the CZM, and (ii) grain failure due to a structural instabil-

ty. We ran simulations to failure with incremental grain boundary

istances from immediately beneath the indenter tip to a distance

uch that a transition in failure mechanism was identified. 

As a result, we presented the failure analysis plot in Fig. 9 that

hows the critical fracture load, F c , as a function of grain boundary

istance, d . There are three distinct regions where we consider the

actors that influence failure: I, II, and III. The division between re-

ions II and III identifies the critical threshold distance, d c , between

ailure modes. For d < d c , failure occurs within the grain bound-

ry, while for d > d c failure occurs within the grain. Region I shows

lear nonlinearity that we attribute to contact with the indenter

ip upon grain boundary rupture and therefore we expect depen-

ence on r tip . On the contrary, we suspect that the linear slope in

egion II is independent of r tip because the grain boundary is suf-

ciently far that it sees the indenter tip as a point load. In region

II, F c becomes constant due to a transition of failure mechanisms.

ailure occurs within the grain due to a structural instability and

ecomes independent of d . 

The formulation of this membrane-based CZM allows further

tudies of more complicated and realistic polycrystalline graphene

omains. In future studies, we will examine the effect of r tip on

he probability of failure and we will consider randomly gener-

ted grain structures to more accurately capture the experimen-

ally observed structures. Additionally, these results establish the

oundation to systematically vary the cohesive zone parameters

o investigate their effects on the transitions between failure re-

ions. A future direction of this research results will be to use

his model through an inverse analysis in order to analyze experi-

ents of polycrystalline graphene, such as the ones performed by

ee et al. (2013) , to determine the grain boundary strength. Ulti-

ately, this model provides a means to study the probability of

ailure of polycrystalline CVD-grown graphene. 
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