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In recent studies, the in-plane elastic properties of graphene have been computed via Density Functional
Theory (DFT) and expressed in the form of a higher-order continuum elastic constitutive model. The stud-
ies predict that graphene exhibits an anisotropic and non-linear elastic response at high strains. However,
one study predicts that the rupture mechanism of graphene at its intrinsic strength is due to elastic insta-
bility whereas another study predicts the rupture mechanism at its intrinsic strength is due to phonon
instability. In the present paper, we use the higher-order continuum elastic constitutive model within
the context of the finite element method to simulate a set of experiments of the indentation of circular
freestanding monatomic graphene membranes. There is a close correspondence between the measured
and predicted measured force vs. displacement responses of indented graphene, providing experimental
validation for the constitutive response. Further, there is a close correspondence between the measured
and predicted breaking force of graphene via the elastic instability mechanism. Thus, the results suggest
that the elastic instability precipitates failure of pristine graphene at its intrinsic strength, and also pro-
vides further experimental validation of the constitutive response.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Graphene, a two-dimensional sheet of sp2-bonded carbon
atoms closely packed in a honeycomb crystal lattice, has potential
applications (Chen et al., 2009; Geim, 2009; Lin et al., 2010; Van
Noorden, 2006; Xu et al., 2009) in many fields and has been studied
extensively since being isolated in 2004 (Novoselov et al., 2004).
The extremely high surface area to volume ratio due to its two-
dimensional structure makes graphene an excellent candidate
material for detecting individual gas molecules (Schedin et al.,
2007). Graphene has been used to make high-speed transistors
and other electronic devices because of its outstanding electrical
conductivity (Avouris et al., 2007; Chen et al., 2009; Lin et al.,
2009, 2010). Furthermore, graphene has been proposed as an ideal
candidate for light-weight high-performance composite materials
(Stankovich et al., 2006) because of its extraordinary mechanical
properties (Lee et al., 2008), such as high elastic modulus and the
highest measured intrinsic strength of a known material. Such ad-
vanced applications require a fundamental understanding of the
properties of graphene; in this paper we concentrate on the
mechanical properties.
ll rights reserved.
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A recent set of experiments (Lee et al., 2008) probed the elastic
properties as well as the intrinsic strength of graphene, which is the
stress at which graphene fails in the absence of any defects. The
geometry of the experimental configuration is illustrated in
Fig. 1a. The substrate for the experiments was a silicon wafer with
a 300 nm SiO2 epilayer. An array of circular wells with diameters
either of 1 lm or 1.5 lm was etched into the substrate to a depth
of 500 nm. Monolayer graphene films were deposited over the ar-
ray of holes via manual exfoliation from a graphite source. Two
diamond AFM tips, each with a different radius, were used to de-
flect the center of the monolayer graphene films. Since the inden-
ters had a spherical cap, the highest stress state in the graphene is
expected to be immediately under the center of the indenter tip
where the state of stress is expected to be equibiaxial tension.
The force vs. displacement response of the deformed graphene is
a function of the diameter of the suspended graphene film, but is
insensitive to the AFM indenter tip radius. On the other hand,
the force at which the monolayer graphene films ruptured is a
function of the AFM indenter tip radius, but is insensitive to the
diameter of the suspended graphene film. The radii of the two dia-
mond indenter tips were 16.5 nm and 27.5 nm radius, which led to
breaking forces, respectively of 1.8 lN and 2.9 lN as averaged over
23 different specimens.

Graphene is a brittle material, so the probability distribution of
the experimental breaking forces was expected to be a Weibull
distribution. However, the Weibull modulus obtained from the
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Fig. 1. (a): Schematic of Atomic Force Microscope (AFM) nanoindentation test on
circular suspended graphene film performed in Lee et al. (2008); (b): Mesh of 1-lm-
diameter graphene membrane with zigzag direction parallel to x1-axis and
armchair direction parallel to x2-axis.
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experimental values was an order of magnitude higher than the
Weibull modulus measured both from the fracture of carbon nano-
tubes as well as from multiple length scale simulations of the
deformation of defect-containing graphene sheets (see (Lee et al.,
2008) for full discussion of Weibull modulus from the measure-
ments). Given the very high value of Weibull modulus, it was pos-
tulated that graphene membranes ruptured in the absence of any
defects. Thus, the stress state in the graphene films achieved the
intrinsic strength of graphene at its point of failure. That the break-
ing force distribution was well approximated by a Gaussian distri-
bution—indicating only random variations in the measured
breaking force—is consistent with this interpretation.

Several authors have considered the intrinsic strength of graph-
ene from a theoretical perspective (Khare et al., 2007; Kudin et al.,
2001; Liu et al., 2007; Marianetti and Yevick, 2010; Van Lier et al.,
2000; Wei et al., 2009). With regard to the equibiaxial stress state
achieved under the indenter tip, Wei et al. (2009) employed den-
sity Functional Theory (DFT) and found the intrinsic strength of
graphene to be achieved at a nominal strain of approximately
0.225, beyond which the material will rupture due to elastic insta-
bility. A recent report by Marianetti and Yevick (2010) based also
on DFT calculations suggest that under an equibiaxial strain state,
graphene will fail at a nominal strain of 0.151, before the elastic
instability. Both first principles studies assumed a temperature of
absolute zero as well as homogeneous in-plane deformation states.
However, Marianetti and Yevick (2010) used a larger unit cell in
their calculations that allows the activation of a phonon instability
in a soft K1 mode that is suppressed in the smaller unit cells of Wei
et al. (2009). Otherwise, the elastic response up to the point of fail-
ure was identical in the two studies. Therefore, investigating the
mechanical responses of graphene in the nanoindentation tests
provides the opportunity to evaluate the instability mode that pre-
cipitates failure.

Multiple length scale constitutive models of graphene have re-
cently been developed to describe its mechanical behavior under
arbitrary in-plane deformation by fitting the strain energy density
functions calculated from atomistic methods to higher-order poly-
nomial approximations of the strain energy density function that
account for the symmetries of the graphene atomic lattice (Cade-
lano et al., 2009; Wei et al., 2009). For example, Cadelano et al.
(2009) combined continuum elasticity theory and tight-binding
atomistic calculations to obtain a nonlinear elastic description for
in-plane deformation in which the elastic strain energy density is
expanded in a Taylor series truncated beyond the third-order term.
The resulting formulation—with five independent elastic con-
stants—provides a reasonable description of the behavior of graph-
ene, but the behavior at both small strains and finite strains was
not reproduced simultaneously with sufficient fidelity to allow
investigation of the rupture of graphene at high strains (Lee
et al., 2008). Independently, Wei et al. (2009) performed ab initio
calculations on graphene and derived a more general form of the
continuum elastic strain energy density function that includes
fourth- and fifth-order terms in strain, which will be discussed in
detail below. Lu and Huang (2009) have derived a continuum
framework that accounts for both in-plane and bending contribu-
tions to the elastic strain energy function, as well as terms that
couple the in-plane and bending contributions.

The goal of this paper is threefold. First, we implement a multi-
ple length scale, fifth-order non-linear continuum description of
the elastic properties of graphene into the commercial finite ele-
ment code, ABAQUS (SIMULIA, 2009) in the form of a user material
(UMAT) subroutine. The UMAT is valid under arbitrary deforma-
tion states for which the radius of curvature of the deformed
graphene is significantly larger than the in-plane interatomic spac-
ing of the carbon atoms. Second, we simulate a set of indentation
experiments (Lee et al., 2008) of freestanding monatomic graphene
layers suspended over circular wells. Third, we demonstrate a very
close correspondence between the calculated results and experi-
mental results of both the force vs. displacement response of the
indented graphene films as well as the breaking force of the graph-
ene films. The results demonstrate that the stress in the film ap-
proached the intrinsic strength of graphene and failed due to
elastic instability.

This paper is organized as follows. In Section 2 we review the
multiple length scale stress–strain constitutive formulation of
graphene (Wei et al., 2009). In Section 3, we describe the imple-
mentation of the constitutive formation into a user material
(UMAT) subroutine. In Section 4, we describe the implementation
of a small degree of phenomenological viscosity added to the con-
stitutive model to enhance stability under conditions of strain soft-
ening. The details and results of the simulation of the indented
suspended circular graphene films are discussed in Section 5. Final-
ly, in Section 6, we discuss experimental validation of the constitu-
tive relations as well as the mode of failure instability by
highlighting the close correspondence of the simulation results to
the experimental results.
2. Multiple length scale non-linear, anisotropic elastic
constitutive model of graphene

A material that deforms in a thermodynamically reversible
sense is said to exhibit elastic constitutive behavior. Such a re-
sponse is predicated upon the existence of a strain energy density
potential function that stores and releases energy associated with
deformation. The strain energy density potential, denoted here as
U, is a scalar function of the elastic strain.

As discussed in Wei et al. (2009), the elastic strain energy den-
sity can be expanded in a Taylor series in terms of powers of strain
as

U ¼ 1
2!

CIJgIgJ þ
1
3!

CIJKgIgJgK þ
1
4!

CIJKLgIgJgKgL

þ 1
5!

CIJKLMgIgJgKgLgM þ � � � ; ð1Þ

where the Lagrangian strain, gi, is chosen as the strain measure and
the Voigt notation (Nye, 1985) is employed for subscripts: 11 ? 1,
22 ? 2, 33 ? 3, 23 ? 4, 32 ? 4, 13 ? 5, 31 ? 5, 12 ? 6, 21 ? 6
(N.B. for strain, g4 = 2g23, g5 = 2g31, g6 = 2g12). Each higher-order
elastic modulus tensor in Eq. (1) is denoted as C, and the number
of subscripts indicates the order of the elastic constants, so the
second-order elastic constants (SOEC) are components of CIJ, the
third-order elastic constants (TOEC) are components of CIJK, the
fourth-order elastic constants (FOEC) are components of CIJKL, and



Fig. 2. Schematic of Cartesian coordinate system for higher order elastic constants
of graphene lattice in this study-x1-axis is parallel to zigzag direction and x2-axis is
parallel to armchair direction.

Fig. 3. Comparison of stress–strain responses for graphene under plane strain
tension in armchair and zigzag directions and equibiaxial tension obtained from
FEM simulation and ab initio calculations in Wei et al. (2009). Superscripts
represent the direction in which tension is applied and subscripts represent the
second P-K stress components using Voigt notation.
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fifth-order elastic constants (FFOEC) are components of CIJKLM; the
tensors are fourth-, sixth-, eighth- and tenth-rank tensors, respec-
tively. For graphene under an arbitrary in-plane deformation state,
the only non-zero components of the Lagrangian strain tensor are
g1, g2, and g6, which are according to the Voigt notation, g1 = g11,
g2 = g22, and g6 = 2g12.

The stress associated with a given deformation state is deter-
mined from derivatives of the elastic strain energy density as
follows

RI ¼
@U
@gI

¼ CIJgJ þ
1
2!

CIJKgJgK þ
1
3!

CIJKLgJgKgL þ
1
4!

CIJKLMgJgKgLgM

þ � � � : ð2Þ

with the second Piola–Kirchhoff stress tensor, RI, work conjugate to
the Lagrangian strain. For graphene, the only non-zero components
of the stress tensor are, employing the Voigt notation,

R1 ¼ R11; R2 ¼ R22; and R6 ¼ R12:

From symmetry of the graphene atomic lattice, there are two inde-
pendent elastic constants in the SOEC tensor, three in the TOEC ten-
sor, four in the FOEC tensor, and five in the FFOEC tensor,
respectively, for a total of fourteen independent elastic constants
(Wei et al., 2009). The non-zero independent components for the
high order elastic constant tensors are listed in Table 1 with dimen-
sions of N/m suitable for a two-dimensional material; the values of
the dependent components are listed in Wei et al. (2009). In the ref-
erence Cartesian coordinate system, the x1-axis is parallel to the
graphene’s zigzag direction and the x2-axis is parallel to the arm-
chair direction, as in Fig. 2. The two independent second-order elas-
tic constants determine the linear elastic behavior of graphene. One
or more odd-order terms are necessary for a peak stress to exist in
the stress–strain response.

In previous DFT calculations (Wei et al., 2009), a two-atom
primitive cell was used. Periodic boundary conditions were applied
and the out-of-plane dimension of the primitive cell was main-
tained at 15 Å to simulate an isolated monolayer graphene. The
contribution of bending to the strain energy density of the primi-
tive cell due to bending was assumed negligible as compared to
the in-plane strain contribution. All the DFT calculations assumed
zero temperature using the DFT code, Vienna ab initio simulation
package (VASP) (Kresse and Furthmuller, 1996).

Three deformation states were investigated using the DFT cal-
culations. One is a state of uniaxial strain in the zigzag direction,
such that g1 P 0, g2 = 0, g6 = 0, with reference to Fig. 2. The calcu-
lated stress state is plotted using symbols in Fig. 3, where Rzig

1

develops due to the extensional strain along the x1-axis and Rzig
2

develops due to the lateral strain constraints along the x2-axis.
The second deformation state is uniaxial strain in the armchair
direction for which g1 = 0, g2 P 0, g6 = 0, with reference to Fig. 2.
The stress state is plotted using symbols in Fig. 3 where Rarm

2 devel-
ops due to the extensional strain along the x2-axis and Rarm

1 devel-
ops due to the lateral strain constraints along the x1-axis. The third
Table 1
Non-zero independent components for the SOEC, TOEC, FOEC and FFOEC tensors of
graphene (Wei et al., 2009).

SOEC (N/m) TOEC (N/m) FOEC (N/m) FFOEC (N/m)

Cð2DÞ
11 ¼ 358:1 Cð2DÞ

111 ¼ �2817 Cð2DÞ
1111 ¼ 13416:2 Cð2DÞ

11111 ¼ �31383:8

Cð2DÞ
12 ¼ 60:4 Cð2DÞ

112 ¼ �337:1 Cð2DÞ
1112 ¼ 759 Cð2DÞ

11112 ¼ �88:4

Cð2DÞ
222 ¼ �2693:3 Cð2DÞ

1122 ¼ 2582:8 Cð2DÞ
11122 ¼ �12960:5

Cð2DÞ
2222 ¼ 10358:9 Cð2DÞ

12222 ¼ �13046:6

Cð2DÞ
22222 ¼ �33446:7
deformation state is equibiaxial strain for which g1 = g2 = g P 0
and g6 = 0, with reference to Fig. 2. The resulting stress state is
plotted using symbols in Fig. 3 as R1 = R2 = Rbi, R6 = 0. For each
of the three deformation states, the strain energy density and the
elastic response were calculated for extensional strains up to a va-
lue of 0.32. These deformation states were chosen because their
continuum descriptions invoke, together, all fourteen elastic con-
stants, as discussed in Wei et al. (2009).

The values of the fourteen elastic constants were determined by
least-squares fitting the elastic constitutive relations to the DFT
calculations. The resulting elastic constants are in Table 1. The solid
curves in Fig. 3 indicate best fit of the fifth-order continuum
description. It is instructive to note that the anisotropy inherent
in the finite deformation response does not manifest itself until
after a strain level of about 15%, notwithstanding that the elastic
response becomes noticeably nonlinear beyond a strain of about
5%.

3. Finite element implementation into ABAQUS

In this section we describe the implementation of the elastic
constitutive model as a user material (UMAT) in the commercial
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finite element code, ABAQUS (SIMULIA, 2009). The constitutive
model was developed under the assumption of an in-plane defor-
mation state, so the out-of-plane bending stiffness is assumed to
be zero, despite graphene having a non-zero bending stiffness
(Wei et al., 2009). Nonetheless the constitutive model is valid for
deformation states for which out-of-plane rotations occur as long
as the elastic strain energy induced by the bending deformation
is much less than the elastic strain energy induced by the in-plane
deformation. Thus, the UMAT is used specifically for membrane
elements, which accounts for contributions to the elastic strain en-
ergy density from in-plane strains but neglects that from bending
strains.

Since membranes typically have substantial of out-of-plane
deformation, it is necessary to ensure that the stress–strain consti-
tutive relationship is applied in such a way that it is frame invari-
ant. ABAQUS achieves this by applying the constitutive
relationship in a local coordinate frame that instantaneously ro-
tates with the material—specifically at the Jaumann rate—at each
integration point (e.g. Dunne and Petrinic, 2005). For the graphene
UMAT, the zigzag direction of the graphene is always parallel to the
local x1-axis, the armchair direction is always parallel to the local
x2-axis and the local x3-axis coincides with the unit normal vector
of the graphene.

For calculations at each increment of the simulation, ABAQUS
passes into the UMAT subroutine the following quantities: total
true strain, ei, at the beginning of the increment; true strain incre-
ment, De, during the time increment; the Cauchy stress tensor, ri,
at the beginning of the increment; and, the deformation gradient
tensors at the beginning and the end of the increment, Fi and Ff

(the subscript i represents initial, and f represents final, respec-
tively). In turn, the UMAT subroutine calculates the material Jaco-
bian matrix, defined as @Dr/@De (e.g. Dunne and Petrinic, 2005),
and also calculates the Cauchy stress tensor, rf, at the end of the
increment. However, since the constitutive law for graphene given
in Eq. (2) is in terms of the second Piola–Kirchhoff stress and the
Lagrangian strain tensors, all calculation in the UMAT subroutine
are in terms of second Piola–Kirchhoff stress and Lagrangian strain
tensors, and proper conversions between the Cauchy stress and
logarithmic strains quantities are made as required.

The Lagrangian strain tensors at the beginning and end of each
time increment, gi and gf, can be expressed as

gi ¼
1
2

FT
i Fi � I

� �
and gf ¼

1
2

FT
f Ff � I

� �
; ð3Þ

where Fi and Ff are the initial and final deformation gradient tensors
in the time increment, respectively. From the constitutive law given
in Eq. (2), we express the material Jacobian matrix in terms of the
second Piola–Kirchhoff stress and Lagrangian strain tensors as

@DR
@Dg

� �
IJ

¼ @DRI

@Dg J
¼ CIJ þ CIJKgK þ

1
2!

CIJKLgKgL þ
1
3!

CIJKLMgKgLgM:

ð4Þ
It is of interest to note that unlike linear isotropic elastic materials,
for which the material Jacobian matrix consists only of the first
term in the right hand side of Eq. (4) (e.g. Dunne and Petrinic,
2005), the Jacobian matrix for graphene contains the higher order
terms of the Lagrangian strain components. Thus, the Jacobian ma-
trix for graphene depends on the current strain state of the material.
The increment of the second Piola–Kirchhoff stress tensor is then
expressed as

DR ¼ @DR
@Dg

� �
Dg; ð5Þ

in which Dg = gf � gi is the Lagrangian strain increment during the
time step. The second Piola–Kirchhoff stress tensor at the end of the
time increment, R1, can be updated as
Rf ¼ Ri þ DR ð6Þ

where Ri is the second Piola–Kirchhoff stress tensor at the begin-
ning of the time increment. To be consistent with the convention
in ABAQUS, we also convert the second Piola–Kirchhoff stress ten-
sor into the Cauchy stress tensor at the end of the UMAT subroutine.
The updated Cauchy stress tensor, rf, at the end of the time incre-
ment is (e.g. Dunne and Petrinic, 2005)

rf ¼
1
J

Ff Rf F
T
f ð7Þ

where J is the determinant of the deformation gradient tensor, Ff.

4. Snap-back instability, small viscosity and model verification

Numerical methods have computational difficulties in handling
problems with significant strain softening (i.e. when the deforma-
tion of the material increases, the tangent stiffness of the system
decreases). Since the constitutive behavior of graphene given in
Eq. (2) has strain softening, convergence difficulties tend to occur
during the Newton–Raphson iterations as the stress–strain re-
sponse reaches a peak (or, the tangent stiffness approaches zero).
This computation difficulty is known as the snap-back instability
(Gao, 2006; Gao and Bower, 2004) (or called ‘Z’ or ‘S’-type instabil-
ity), and the radius of convergence of the Newton–Raphson meth-
od may reduce to zero at the point of instability. Gao and Bower
(2004) introduced a simple technique for avoiding convergence
difficulties for such cases by introducing a small amount of viscos-
ity in the constitutive model.

Adding a viscous term into the constitutive model in Eq. (2), a
new constitutive law can be expressed as

RI ¼ CIJgJ þ
1
2!

CIJKgJgK þ
1
3!

CIJKLgJgKgL þ
1
4!

CIJKLMgJgKgLgM þ DIJ _gJ :

ð8Þ
where _gJ is the component of Lagrangian strain rate tensor, DIJ is the
viscoelastic constant tensor (with unit of GPa � s), which is defined
as

DIJ ¼ lCIJ ð9Þ
in which l is a viscosity-like parameter that has units of time.
Applying the central difference operation on Eq. (8), yields

RIþ
DRI

2
¼CIJ gJþ

DgJ

2

� �
þ 1

2!
CIJK gJþ

DgJ

2

� �
gKþ

DgK

2

� �

þ 1
3!

CIJKL gJþ
DgJ

2

� �
gKþ

DgK

2

� �
gLþ

DgL

2

� �

þ 1
4!

CIJKLM gJþ
DgJ

2

� �
gKþ

DgK

2

� �
gLþ

DgL

2

� �
gMþ

DgM

2

� �

þDIJ
DgJ

Dt
:

ð10Þ
where Dt is the time increment. Then the material Jacobian matrix
in the UMAT subroutine takes the form

@DR
@Dg

� �
IJ
¼ CIJ þ CIJK gK þ

Dgk

2

� �

þ 1
2!

CIJKL gK þ
Dgk

2

� �
gL þ

DgL

2

� �

þ 1
3!

CIJKLM gK þ
Dgk

2

� �
gL þ

DgL

2

� �
gM þ

DgM

2

� �

þ 2
DIJ

Dt
: ð11Þ

The increment of the second Piola–Kirchhoff stress can be ex-
pressed as



Fig. 4. Comparison of force–deflection responses obtained from experiments
(hollow symbols), FEM simulation with linear elastic model (Lee et al., 2008), and
FEM simulation with nonlinear elastic model in present study.
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DRI ¼ 2CIJ gJ þ
DgJ

2

� �
þ CIJK gJ þ

DgJ

2

� �
gK þ

DgK

2

� �

þ 1
3

CIJKL gJ þ
DgJ

2

� �
gK þ

DgK

2

� �
gL þ

DgL

2

� �

þ 1
12

CIJKLM gJ þ
DgJ

2

� �
gK þ

DgK

2

� �
gL þ

DgL

2

� �
gM þ

DgM

2

� �

þ DIJ
2DgJ

Dt
� 2½Ri�I

ð12Þ
Fig. 5. Evolution of maximum in-plane principal Cauchy stress (GPa, assuming nomi
where Ri is the second Piola–Kirchhoff stress tensor at the begin-
ning of the time increment. The magnitude of DIJ (or viscosity term,
l) must be sufficiently small to avoid sacrificing the accuracy of the
constitutive law and but large enough to avoid the convergence dif-
ficulties. We combined Eqs. (11) and (12) with (6) and (7) to devel-
op the UMAT.

To verify the continuum model implementation in the UMAT,
we performed three simulations to compare with results obtained
from ab initio calculations under three deformation states: uniaxial
strain in the zigzag direction, uniaxial strain in the armchair direc-
tion and equibiaxial strain. A graphene flake with dimension of
1 � 1 nm was meshed with a total of 100 four-node linear quadri-
lateral membrane elements. The Newton–Raphson scheme was ap-
plied in the simulation with 1000 increments over a quasi-static
load step. The stress–strain responses for graphene under the three
deformation configurations obtained by finite element method
match the stresses evaluated directly from the constitutive model
(c.f. Fig. 3) to within a small fraction of a percent. Thus, for a suffi-
ciently small viscosity parameter, l, the continuum model imple-
mented in ABAQUS is able to capture correctly the ab initio
stress–strain responses of graphene at very little cost of computa-
tional accuracy.
5. Model validation by AFM indentation test

We now describe an implementation of the UMAT to simulate
Atomic Force Microscope (AFM) nanoindentation experiments on
nal thickness of 0.335 nm) at central region of the graphene during indentation.



Fig. 6. Evolution of maximum in-plane principal logarithmic strain at central region of the graphene during indentation.
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circular suspended graphene films. Since graphene has monatomic
thickness it is considered to be a two-dimensional material with an
indeterminable thickness, so that stress quantities are defined with
units of force per length rather than units of stress per area. How-
ever, the finite element formulation requires membrane elements
to have a prescribed effective thickness, which we arbitrarily
choose to be h = 0.335 nm which is the interlayer spacing of graph-
ite (Aljishi and Dresselhaus, 1982). In addition, the finite element
formulation requires stress and the elastic constants to be effective
three-dimensional quantities with units of force per area. Here we
will denote the effective three-dimensional quantities with a
superscript (3D). The relationship between the two-dimensional
and three-dimensional stress quantities are, for the case of the sec-
ond-order elastic constants, CIJ ¼ Cð3DÞ

IJ h. All other elastic constants
as well as the stress components themselves follow the same rela-
tionship between intrinsic two-dimensional quantities and effec-
tive three-dimensional quantities necessary in the finite element
formulation.

The freestanding 1 lm diameter graphene membrane is
meshed with 16,270 four-node linear quadrilateral membrane ele-
ments as shown in Fig. 1b. The zigzag direction of the graphene is
parallel to the x1-axis and the armchair direction is parallel to the
x2-axis in the initial configuration. The central region of the graph-
ene membrane has a higher mesh density: a total of 3374 elements
within the inner 15 nm radius. The indenter tip is modeled as a
frictionless spherical rigid body with radius of 16.5 nm, consistent
with the smaller AFM tip used in the experiments. Before indenta-
tion, an initial uniform equibiaxial in-plane stress of 0.335 N/m
(corresponds 1 GPa effective three-dimensional stress) is applied
to the graphene membrane to compensate for the initial tension
in the graphene due to the van der Waals interaction between
graphene and the periphery of the well (Lee et al., 2008).

The position of the indenter tip is prescribed throughout the
simulation, achieving a final indentation depth of 113 nm after
1000 time increments. The simulation becomes unstable as the
tangent stiffness of the graphene reduces to near zero in the most
highly stressed portion of the graphene directly under the indenter
tip. We choose l = 3.5 � 10�3 s, which is the minimum value that
enables the peak stress in the graphene to be achieved under the
center of the indenter.

Fig. 5 shows the effective three-dimensional maximum in-plane
principal Cauchy stress in units of GPa in the central region of the
graphene at different indentation depths. For relatively small
deformations (when deflection is less than 80 nm as shown in
Fig. 5a), the graphene film shows an approximate equibiaxial strain
response. That is, the mechanical response of graphene is approx-
imately isotropic, even well into the nonlinear elastic regime.
When the indentation depth increases to 105 nm (Fig. 5b), the
graphene is seen to exhibit an anisotropic nonlinear elastic behav-
ior, evidenced by the sixfold rotation symmetry of the stress state,
which is consistent with the sixfold rotation symmetry of the
graphene atomic lattice. At an indentation depth of 109 nm
(Fig. 5c), the central point of the graphene begins to exhibit a strain
softening because the strain in the graphene at that point is beyond



Fig. 7. Evolution of minimum in-plane principal Cauchy stress (GPa, assuming nominal thickness of 0.335 nm) at central region of the graphene during indentation.
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that which corresponds to the peak, or intrinsic, stress in the con-
stitutive response. Clearly the strain softening will lead to elastic
instability with further deformation. This is seen at the final incre-
ment in the simulation after which the solver failed to converge to
an equilibrium solution; the vicinity of the film center shows a
clear sixfold symmetric pattern of stress localization (Fig. 5d).

The maximum stresses in Fig. 5b and c are essentially the same.
Thus the effective viscosity played a negligible role determining
the stress state prior to severe strain localization. In Fig. 5d, the
stress is highly localized in the zigzag directions, indicating defor-
mation instability. However, the maximum stress in Fig. 5d is sig-
nificantly higher than the intrinsic stress calculated from DFT, so it
is apparent that the effective velocity plays a non-negligible role in
the evolution from Fig. 5c and d. Thus, the simulations predict the
graphene membrane to fail at some indentation depth between the
109 nm of Fig. 5c and the 113 nm of Fig. 5d. The breaking force
estimated by the FEM simulations on 1-lm-diameter graphene
membranes indented by the diamond probe with tip radius of
16.5 nm is 1.818 lN, which is consistent with the mean value of
the experimental breaking force of 1.8 lN to within the experi-
mental uncertainty (Lee et al., 2008). The force on the indenter in-
creases by about 0.1 lN in the simulation between those two
states in Fig. 5c and d.

The force–deflection response from the FEM simulation with
the 16.5 nm tip is shown in Fig. 4. For comparison, one experimen-
tal result as well as the result from the FEM simulation with a lin-
ear elastic model (Lee et al., 2008) are also included. The force–
deflection response given by the FEM simulations with the nonlin-
ear elastic model is consistent with the experimental result. Fur-
thermore, it is of interest to note that at large deformation
(deflection of the membrane beyond 80 nm), the graphene mem-
brane starts to show the nonlinear elastic behavior, which is suc-
cessfully captured by the constitutive model. The linear elastic
model describes well the mechanical response of graphene for
small deflection; however, it exhibits relatively large deviation
for the responses at large deformation.

The maximum in-plane principal logarithmic strain, minimum
in-plane principal Cauchy stress (GPa), minimum in-plane princi-
pal logarithmic strain fields at the central region of the graphene
at the same four time steps are shown in Figs. 6–8, respectively.
All demonstrate the development of anisotropic stress–strain re-
sponses at large deformation and highlight the stress localizations
when graphene is loaded to the breaking point.

Fig. 9 shows the distribution of the second Piola–Kirchhoff
stress components, R1 and R2, along the radius in zigzag and arm-
chair, respectively, at an indentation depth of 109 nm. At this point
the central region of the graphene film has been deformed enough
such that these two stress distributions clearly demonstrate aniso-
tropic stress–strain response and strain softening. However, the
plot suggests that in regions away from the center of the film,
the stress–strain response is still approximately isotropic. Further-
more, the inset of Fig. 9 confirms that the center point of the film is
still in equibiaxial strain state (R1 � R2).



Fig. 8. Evolution of minimum in-plane principal logarithmic strain at central region of the graphene during indentation.

Fig. 9. Distribution of second P-K stress components, R1 and R2 (GPa, assuming
nominal thickness of 0.335 nm using Voigt notation) at indentation depth of
109 nm along the radius in armchair and zigzag direction, respectively. Inset figure
highlights anisotropy and strain softening at region near film center.
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In addition, another simulation was performed on the same 1-
lm-diameter graphene indented with the larger indenter (tip ra-
dius of 27.5 nm) used in Lee et al. (2008). The predicted breaking
force of 2.988 lN for the larger tip, agrees with the mean experi-
mental value of 2.9 lN within the experimental uncertainty (Lee
et al., 2008).

A very close correspondence between the calculated results and
experimental results of both the force vs. displacement response of
the indented graphene films as well as the breaking force of the
graphene films strongly suggests the failure is caused by the elastic
instability. However, we also investigate whether the experimental
result is consistent with the phonon instability (Marianetti and
Yevick, 2010). If failure would have occurred at equibiaxial strain
of 0.151, consistent with the phonon instability, the breaking
forces would have been 0.935 lN and 1.558 lN, for 16.5 nm and
27.5 nm radius tips, respectively. These discrepancies are far great-
er than the experimental uncertainty, so the phonon instability
apparently is not activated in the experiments.
6. Discussion and conclusions

In the present study, the fifth-order nonlinear elastic constitu-
tive law for graphene (Wei et al., 2009) has been reviewed and
the implementation of the nonlinear elastic constitutive law into
the commercial finite element code, ABAQUS, through the user de-
fined material subroutine has been discussed. The computational
difficulty (snap-back instability) due to graphene’s strain-softening
at large deformation has been overcome by introducing a small vis-
cosity into the nonlinear elastic constitutive model. The capability
of the modified nonlinear elastic constitutive model to describe the
mechanical response of graphene under a general deformation
configuration has been validated by applying the UMAT subroutine
into the finite element simulations of the nanoindentation tests on
free-standing graphene films. There is a high degree of consistency
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between the numerical and experimental results; thus the nonlin-
ear continuum model is able to capture the mechanical response of
graphene at strains above 5% when the nonlinearity becomes
important as well as at strains above 15% when the elastic proper-
ties become appreciably anisotropic. Furthermore, the finite ele-
ment simulation based on the nonlinear elastic model provides
details on the stress and strain fields within graphene under the
influence of a spherical indenter.

In addition, the UMAT subroutine reveals the detailed stress and
strain configurations in the graphene membrane. The simulation
results demonstrate that rupture in the central region of the graph-
ene in the indentation tests initiates in the strain-softening stage at
a strain of approximately 0.228 after having passed the maximum
strength. This suggests that the failure mechanism is due to an
elastic instability rather than the phonon instability in soft K1

mode (Marianetti and Yevick, 2010) which would have occurred
at a smaller magnitude indentation force than measured in the
experiments. In addition to assuming deformation at the tempera-
ture of absolute zero, it is important to note that the DFT compu-
tations assumed freestanding graphene under a homogeneous in-
plane deformation state, whereas experimentally, the graphene
and the diamond indenter tip are in contact and the deformation
state is heterogeneous with modest out-of-plane bending. It is pos-
sible that the phonon instability may be suppressed under such
conditions. Therefore, further theoretical and experimental studies
are essential to validate the proposed failure mechanisms. For
example, one could perform atomistic modeling at room tempera-
ture to investigate the failure modes of graphene in various strain
states; and bulge test experiments (Vlassak and Nix, 1992; Wei
et al., 2007; Xiang et al., 2006) can serve as an alternative to nan-
oindentation in order to eliminate the possible indenter-to-sample
interactions.
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