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A B S T R A C T

A numerical investigation of wedge indentation, with a nearly flat indenter, into a monazite
(LaPO4) single crystal is carried out to obtain the asymptotic field solution associated with the
moving contact point singularities. The crystal orientation is such that plane strain conditions
prevail, under the assumption of small scale yielding, as out-of-plane deformations are eliminated
due to out-of-plane mirror symmetry of the crystal, specimen and loading state. The plastic de-
formation in such a 2D study can be described in terms of effective in-plane slip systems com-
prised of crystallographic slip systems with equal and opposite out-of-plane deformation and
rotation. The numerical simulations are conducted within a framework specialized for self-si-
milar problems and adopts a visco-plastic single crystal material model. The detailed numerical
investigation of the monazite single crystal reveals that the effective slip systems lead to a non-
symmetric in-plane deformation field, which is consistent with the absence of in-plane mirror
symmetries of the crystal. Interestingly, the non-symmetric deformation field results in one
contact point singularity travelling at a greater speed than the other. The deformation near the
moving contact point singularities are found to be divided into two angular sectors separated by a
boundary of glide shear type. The slip rates on the individual systems reveal that one slip system
dominates at both contact points, whereas the other slip system shows negligible activity. Thus,
only one slip system gives rise to a discontinuity in the slip rate field.

1. Introduction

Naturally occurring monazite may be recognized as a reddish-brown phosphate mineral. Monazite is usually found in small
isolated crystals and contains rare earth metals such as cerium, lanthanum, and neodymium. A particular interest in the lanthanum
phosphate (LaPO4) monazite material exists due to its relatively low hardness, high-temperature stability, and compatibility with
common structural oxide ceramics, while exhibiting weak bonding to other oxide elements. These special mechanical properties
make monazite an ideal material for fiber reinforced ceramic matrix composites. For example, monazite coated fibers have proven to
hinder destructive damage mechanisms by enabling crack deflection. Furthermore, the high-temperature stability eliminates the
problem of oxidation which is commonly observed during fiber pullout for interface materials used in ceramic matrix composites
(Davis et al., 2003; Ruggles-Wrenn et al., 2009).

Investigation of the asymptotic slip solution field near moving singular points (such as growing cracks and wedge indentation),
based on slip-line theory that assumes linear elastic, perfectly plastic material behaviour, dates back to the 1980s (Drugan et al.,
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1982; Drugan and Rice, 1984; Drugan, 1986; Rice, 1987; Mesarovic and Kysar, 1996; Drugan, 2001; Kysar, 2001a; b; Saito and Kysar,
2011). The early studies predict that the deforming domain near a moving contact point singularity can be divided into sectors
separated by glide or kink shear discontinuities. The deformation, within each sector, will be governed by either purely elastic or
active plastic deformation on a number of slip systems. The fundamental properties of asymptotic fields, in relation to both fracture
and wedge indentation in single crystals, have been investigated experimentally by a number of authors (Bastawros and Kim, 1998;
Kysar, 2000; Crone and Shield, 2001; Kysar and Briant, 2002; Kysar et al., 2010; Saito and Kysar, 2011; Saito et al., 2012; Dahlberg
et al., 2014, 2017; Sarac et al., 2016; Juul et al., 2018; Sarac and Kysar, 2018). However, existing studies are limited to the three most
common crystal structures being FCC, BCC, and HCP. In fact, only few studies investigate the details of the deformation in more
special crystal configurations such as the monazite crystal (monoclinic structure). The existing numerical investigations of monazite
have focused mainly on determining anisotropic elastic parameters, thermal conductivity (Feng et al., 2013), and radiation resistance
(Grechanovsky et al., 2013). Furthermore, the deformation mechanisms (experimentally observed active slip systems and twinning)
of polycrystalline monazite have been investigated by Hay and Marshall (2003) and Hay (2005, 2008).

The aim of the present study is to investigate the deformation field, and the associated asymptotic fields in the vicinity of moving
contact singularities for wedge indentation (i.e. the point where the indenter continuously comes into contact with new surface
material), with a nearly flat indenter, into an elastic, perfectly plastic monazite single crystal. The results will serve as foundation for
understanding the properties of monazite measured in indentation as the asymptotic solution reveals how dislocation activity can be
linked to the formation of kink shear sector boundaries.

The paper is divided into the following sections: The wedge indentation problem is outlined in Section 2. The material model,
derivation of the in-plane effective slip systems and the yield surface of monazite are presented in Section 3. The numerical fra-
mework is presented in Section 4, and results are presented in Section 5. Concluding remarks are given in Section 6. Throughout,
index notation, including Einstein's summation convention, is used and a superimposed dot, ( ), signifies the time derivative.

2. Wedge indentation with a nearly flat indenter

Wedge indentation into a monazite single crystal is simulated along the lines of Saito et al. (2012) and Juul et al. (2018) with a
nearly flat indenter such that the indenter angle, ϕ, is close to zero degrees (see Fig. 1). Thus, a small strain assumption is valid.
Furthermore, the indentation is performed under the assumption of negligible friction between the rigid indenter and an elastic,
perfectly plastic material with a very low yield resistance (model parameters are listed in Table 1). The study is performed under such
conditions to investigate the asymptotic field in the vicinity of the moving contact points as well as to ensure a direct comparison to
work existing on more common crystal structures (Saito and Kysar, 2011; Saito et al., 2012; Juul et al., 2018).

In a corresponding numerical study, Juul et al. (2018) compared results for the FCC and BCC crystal structures to the analytical
predictions of Saito and Kysar (2011), which are based on an extension of slip line theory that assumes a linear elastic, perfectly
plastic material behavior. Good agreement was found for this comparison. Following Rice (1987), the analytical investigation by
Saito and Kysar (2011) showed that the asymptotic deformation fields consist of angular sectors centered at the moving contact point
singularity, with the sectors deforming either elastically or plastically. The angular sectors are separated by radial rays, emanating
from the moving contact point, that coincide either with the slip direction or the slip plane normal of the slip systems. As described by
Rice (1987), if the radial ray coincides with a slip direction, dislocations operate in glide shear along the ray, and if the radial ray

Fig. 1. Wedge indentation in a rate-sensitive single crystal. The developed numerical scheme, exploiting the self-similar properties, is applied inside
the elastic-plastic domain, whereas the material is treated as linear elastic outside this domain.
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coincides with the slip plane normal, dislocations operate in kink-shear mode. As the contact point singularity moves quasistatically
relative to the crystal, the angular sectors and sector boundaries move correspondingly through the crystal, hence, velocity dis-
continuities across the radial sector boundaries exist under these conditions (Drugan and Rice, 1984). Both glide shear and kink shear
sector boundaries have been identified experimentally (Bastawros and Kim, 1998; Crone and Shield, 2001; Kysar and Briant, 2002;
Kysar et al., 2010).

The driving force behind the present study is that such analytical solutions do not currently exist for the monoclinic crystal
structure of monazite, but it is expected that the asymptotic solution near the moving points is governed by the same characteristics
as the analytical solutions for FCC and BCC crystals. To bring out the angular sectors and sector boundaries for monazite crystals, the
stress and slip rate distributions near the moving contact point singularity are analyzed in detail (see Section 5). Due to the velocity
discontinuities, that are expected in the present study, spikes of highly localized slip rate emanating from the contact points are also
investigated.

3. Monazite single crystals

3.1. Material model

The wedge indentation study is conducted in a plane strain setting with a small strain formulation, where the displacement field,
ui, provides the total strain, ij, through the relation; u u( )/2ij i j j i, ,= + . The total strain is decomposed into an elastic part, ij

e, and a
plastic part, ij

p, such that ij ij
e

ij
p= + . When the elastic strain field is known, the stress field can be determined by; ij ijkl kl

e= L , where
ijklL is the elastic stiffness tensor.
The elastic strains, required for the calculation of stresses, are determined by obtaining the plastic strains through summation over

all slip systems, :

P P s m m s, 1
2

( ).ij
p

ij ij i j i j
( ) ( ) ( ) ( ) ( ) ( ) ( )= = +

(1)

Here, Pij
( ) is the Schmid tensor, ( ) is the slip rate, and si

( ) andmi
( ) are the unit vectors defining the slip direction and the slip plane

normal, respectively (slip direction and normal are illustrated in Fig. 2b). The slip rate on the individual slip systems, denoted by
superscript, , is determined by employing the visco-plastic power law slip rate relation proposed by Hutchinson (1976).

sgn( )
m

( )
0

( )
( )

0
( )

1/

=
(2)

where m sij i j
( ) ( ) ( )= is the resolved shear stress, 0

( ) is the critically resolved shear stress, and m is the rate sensitivity exponent (not
to be confused with the slip normal mi

( )). The present study concerns the rate independent limit and thus the rate sensitivity
exponent is pushed towards this limit (m 0).

3.2. In-plane slip systems for the 2D study

The monazite material is monoclinic in crystal structure and belongs to the P n2 /1 space group. The primitive monoclinic lattice
structure is characterized accordingly in the so-called second setting (Donnay, 1943; Matthies and Wenk, 2009), with lattice para-
meters; a 0.6825nm= , b 0.7057nm= , c 0.6482nm= , and 103.21= ( bc ab 90= = ) as sketched in Fig. 2a (Hirth and Lothe, 1968;
Hay, 2008). The low symmetry and large lattice parameters, compared to common metals with FCC and BCC structures, make the
characterization of the material deformation somewhat more complex. For the monoclinic crystal structure the slip plane normal,
given by the Miller-index representation (hkl), is associated with the non-orthogonal basis of the reciprocal lattice vectors and the slip
direction is given by the Miller-index representation [hkl] associated with the non-orthogonal basis of the lattice vectors.

Plane strain conditions in a single crystal can be achieved by choosing the plane of deformation such that it coincides with a
mirror symmetry plane in the crystal (see e.g. Rice, 1987; Crone et al., 2004; Kysar et al., 2005; Niordson and Kysar, 2014). Moreover,
it is a requirement that the specimen geometry and the external loading also possess mirror symmetry with respect to the crystal
mirror symmetry plane. Complying with these conditions, the slip systems can be arranged into mirrored pairs, such that each slip
system of the pair has an identical resolved shear stress. The mirrored pair of slip systems are then assumed to active in equal amounts

Table 1
Model parameters.

Parameter Significance Value

E/0 Yield strain 4.5e 5

ν Poisson ratio 0.3
m Strain rate-sensitivity exponent 0.02
0 Reference slip rate 0.001s 1

c Indentation rate 0.5s 1

ϕ Indenter angle 0.038
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when at the critical resolved shear stress. Any out-of-plane plastic deformation of one slip system is counteracted by the other slip
system of the pair. Hence, the net deformation state of the mirrored pair can be described by a single effective in-plane slip system.

Hay (2008) presents findings of active slip systems in monazite and 12 slip systems of interest are identified as possible candidates
to form mirrored pairs of slip systems. These slip systems are summarized in Table 2. The identified slip systems, however, do not
reflect the possible difference in slip resistance along opposite directions of slip. However, based on the discussion of this issue by Hay
(2008), the difference is assumed negligible in the present work.

Figure 2 a presents the definition of the crystallographic orientation in three dimensional space (a Cartesian orthonormal basis).
Here, the crystallographic orientation of the monazite is chosen such that the (010) plane is the mirror symmetry plane for the plane
strain deformation (see Fig. 2c). When interpreting Fig. 2, one should be aware of the following:

1. The lattice vector b is parallel to the [010] direction, the x2 -axis and the (010) plane normal.
2. The lattice vector c is parallel to the [001] direction and the x3 -axis.

Fig. 2. Monazite crystal structure showing (a) the monoclinic crystal system, (b) the 2D representation of the slip in the x x1 3-plane, (c) the crys-
tallographic orientation of the in-plane slip systems relative to the indenter, and (d)–(f) represent the in-plane slip systems.

Table 2
Active slip systems in monazite at room
temperature (identified by Hay, 2008).

Slip System

1 (010)[001]
2 (010)[100]
3 (100)[010]
4 (100)[001]
5 (110)[001]
6 (110)[110]
7 (110)[110]
8 (110)[001]
9 (011)[011]
10 (011)[100]
11 (011)[011]
12 (011)[100]
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3. The lattice vector a is parallel to the [100] direction and the (010) × (001) direction, thus, the lattice vector is oriented in the x x1 3
-plane (mirror plane) at the angle β with respect to the x3 -axis (clockwise rotation).

4. The reciprocal lattice vector represented by the (100) plane normal is parallel to the x1 -axis.
5. The reciprocal lattice vector represented by the (001) plane normal is parallel to the direction [100] × [010].

For monazite single crystals, in the chosen configuration, three in-plane slip systems can be identified. Two being effective slip
systems (mirrored pairs of crystallographic slip systems), and one being a crystallographic slip system in itself. The first in-plane slip
system (Fig. 2d) is comprised of the two crystallographic slip systems (011)[100] and (011)[100] that are equivalent to the effective slip
system (001)[100]. The second in-plane system (Fig. 2e) is the crystallographic slip system (100)[001]which coincides with the third in-
plane slip system (Fig. 2f), constructed from the crystallographic slip systems (110)[001] and (110)[001] which gives the effective slip
system (100)[001]. It is seen that the first in-plane slip direction is at an angle of 103.21 with respect to the x3 -axis, while the second
and the third in-plane slip directions (one crystallographic and one effective) are parallel to the x3 -axis. The three in-plane slip
systems are summarized in Table 3 by in-plane unit vectors SI

A( ) and MI
A( ), which are the rescaled projections of si

( ) andmi
( ) onto the

x x1 3 mirror symmetry plane, respectively. Here, the superscript represents the in-plane slip systems and the subscript represents in-
plane index notation. Lower case letters represent the actual slip systems and upper case letters represent the in-plane systems.
Furthermore, the in-plane unit vectors si

( ) and mi
( ) will be substituted for SI

A( ) and MI
A( ), respectively, in the numerical analysis

(Section 5).

3.3. Yield surface

Yielding is assumed to be governed by the Schmid law through the resolved shear stress

m s i jfor , {1,2,3}ij i j
( ) ( )

0= ± (3)

with the superscript ( ) omitted on the critically resolved shear stress since this value is assumed equal for all crystallographic slip
systems.

Considering plane strain loading in the mirror symmetry plane of the monazite crystal as (010), the stress tensor has no out-of-
plane shear ( 012 32= = ) and Eq. (3) reduces to

s m s m s m( ) 2
21

( )
3
( )

3
( )

1
( )

13 1
( )

1
( ) 11 33

0+ + = ±
(4)

showing that there is no dependence on the out-of-plane normal stress 22.

Table 3
In-plane slip systems of monazite.

In-plane slip system (A) no. (1) (2) (3)

Mirrored pair of slip systems
( )
( )

(011)[100]
(011)[100]

(100)[001] (110)[001]
(110)[001]

s
s
s
s

i
( )

1
2
2

( )

=
0.9735

0
0.2285

0
0
1

0
0
1

m
m
m
mi

( )
1
2
3

( )

=
0. 1703
0. 6666
0. 7257

1
0
0

0.7281
0.6855

0

s
s
s
si

( )
1
2
3

( )

=
0.9735

0
0.2285

– 0
0
1

m
m
m
mi

( )
1
2
3

( )

=
0.1703
0.6666

0.7257

– 0.7281
0.6855

0

In-plane slip system (A) (001)[100] (100)[001] (100)[001]

S S
SI

A
A

( ) 1
3

( )
=

0.9735
0.2285

0
1

0
1

M M
MI

A
A

( ) 1
3

( )
=

0. 2285
0. 9735

1
0

1
0

Angle to (100) in the (010) plane: A( ) −13.21° 90° 90°

A
A

A
( ) 0

( )

0
2
( )= =

1.3415 1 1.3735

A sI
A mJ

A sI
A mJ

A

SI
A MJ

A
( )

( ) ( ) ( ) ( )

( ) ( )=
+ 1.4909 1 1.4561
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Based on the geometric constraints governing the in-plane slip direction vector, slip plane normal vector, and the definition of the
in-plane angle A( ) (with a positive rotation defined counter clockwise, see Fig. 2b), the relations S Mcos( )A A A

1
( ) ( )

3
( )= = and

S Msin( )A A A
3
( ) ( )

1
( )= = permit Eq. (4) to be expressed as

tan(2 )
2 cos(2 )

.A
A

A13
( ) 11 33

( )
0
( )= ±

(5)

Here, A( )
A

0
( )

0
= is the ratio of slip resistance on the effective slip system (A) and the crystallographic slip system. For the FCC and the

BCC crystal structures, Rice (1987); Niordson and Kysar (2014); Juul et al. (2017, 2018) have discussed the scaling ratios associated
with slip system properties that are needed for the response of the effective slip systems and the crystallographic slip systems to
coincide under plane strain conditions. In the present study, scaling of the critically resolved shear stress and scaling of the reference
strain rate will be sufficient and result in the following relations

, and .A A A A
0
( ) ( )

0 0
( ) ( )

0= = (6)

The scaling ratios for each of the effective slip systems are listed in Table 3, which also include expressions for the two quantities
based on slip system unit vectors (both effective and crystallographic unit vectors). As seen from Table 3, the scaling ratios of the two
effective in-plane slip systems (1) and (3) are larger than unity (being the scaling factor for effective slip system (2)). The expression
for the yield surface in Eq. (5), normalized with the critically resolved shear stress, allows for a convenient representation of the yield
criterion in a two dimensional stress space with abscissa ( )/(2 )11 33 0 and ordinate /13 0 (also discussed by Kysar et al., 2005). The
yield surface thereby reveals itself as three sets of parallel lines, oriented at the angle 2 A( ) with respect to the ( )/(2 )11 33 0 -axis,
the distance A( ) (perpendicular to the parallel lines) from the origin in normalized stress space. The inner envelope described by the
parallel lines of the slip systems (1) and (2), and the outer envelope described by parallel lines of slip systems (1) and (3) form yield
surfaces with the vertices listed in Table 4. An illustration of the yield surface is shown in Fig. 3 where it forms a parallelogram with
the vertices A, B, C and D in normalized stress space. In case of the two sets of parallel slip systems (one effective and one crys-
tallographic), the scaling factor (2) results in the lowest critically resolved shear stress, such that plastic deformation will take place
on in-plane slip system (2) for the elastic, perfectly plastic material considered. Thus, the effective in-plane slip system (3) (having the
highest slip resistance) is assumed inactive in the present study and only slip system (1) and (2) are included in the numerical analysis
(obviously this argument would not suffice in the case of a hardening solid).

Table 4
Vertices of the inner and outer envelope that make-up the yield surface of monazite
(see Fig. 3).

Vertex ( )/211 33 0 /13 0

A 1.0022 1
B −5.0277 1
C −1.0022 −1
D 5.0277 −1
E 0.2505 1.3735
F −5.7794 1.3735
G −0.2505 −1.3735
H 5.7794 −1.3735

Fig. 3. Outer envelope (dashed line) and inner envelope (full line) that make-up the yield surface of monazite, depicted in normalized stress space
(( )/(2 )11 33 0 , /13 0). Each set of parallel line segments belong to the slip system indicated by the number in parentheses and is oriented the angle
2 A( ) (see Table 3) with respect to the ( )/211 33 0 -axis. Coordinates of the vertices A - G (the intersect of the line segments) are listed in Table 4.
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4. Numerical framework

4.1. Self-similarity

The present work employs a numerical framework developed for self-similar problems, where the features of the field quantities
remain unchanged, while the fields change in size over time. This framework was first presented in Juul et al. (2018) and employed to
wedge indentation in FCC, BCC, and HCP single crystals with excellent results. It has the great advantages over conventional temporal
finite element approaches in that: 1) the contact point remains stationary relative to the finite element mesh (avoiding discrete nodal
contact events) and thus inherently captures the continuously increasing contact area, and 2) a highly refined mesh can easily be
focused at the contact points as they do not move in this computational framework.

For wedge indentation, the self-similar condition is achieved when the indentation rate, a a c/ = (with a being the half contact
length and a being the contact velocity), is constant. However, compared to the study of Juul et al. (2018), indentation in a monazite
crystal is slightly different due to the non-symmetric nature of the monoclinic structure. The FCC, BCC, and HCP crystals, all studied
in Juul et al. (2018), gave rise to a symmetric displacement field, such that the distance from the indenter tip to the moving contact
point singularity on both sides of the indenter tip are equal. However, this is not the case for monazite. Due to the monoclinic crystal
structure, the displacement field will not remain symmetric and, thus, the velocity of the contact points to the left and right of the
indenter tip will be different. Therefore, it is necessary to introduce individual contact lengths (and velocities) for the left and right
contact points, respectively. These will be denoted ar and al as illustrated in Fig. 1. To satisfy the condition a a c/ = , that ensures a
self-similar solution, the quantities a and a will then have to be treated as the average values such that; a a a( )/2r l= + and
a a a( )/2r l= + .

The self-similar development of the solution in indentation can be recognized by an observer changing the magnification of the
view at a rate related to the indentation process, such that the field quantities appear constant in both shape and size. This note-
worthy characteristic of self-similar problems ties to the fact that only one independent characteristic length exists. Thus, the only
time dependence in the problem enters through the evolution of this characteristic length, a (see discussion in Juul et al., 2018). The
time rate of change of any field quantity can thereby be related to a corresponding spatial derivative in the self-similar coordinate
system through the relation

f c f
i

i
=

(7)

where c is the indentation rate and i is a self-similar coordinate system, where the coordinates of the material points change with
time. Based on this key relation between time and spatial derivatives, it is possible to obtain the history dependence through spatial
integration when solving the problem. The numerical scheme for the spatial integration is adopted from Juul et al. (2018). Here, the
integration lines are also located radially around the indenter tip (see Fig. 1), making it convenient to express the self-similar relation
(Eq. (7)) in a self-similar polar coordinate system with the origin located at the tip of the indenter. The self-similar relation thereby
transforms into

f c f=
(8)

where ρ is the radial distance to a point on the integration line.

4.2. Numerical implementation

The self-similar relation in Eq. (8) is applied to the material model outlined in Section 3.1. Thus, all time derivatives are

Fig. 4. Domain used for numerical simulations. The dashed arrows indicate the direction of gradually increasing element size. The boundary of the
domain is sufficiently far away from the contact point to have negligible influence on the results (the far boundary is clamped).
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transformed into corresponding spatial derivatives through the indentation rate, c, and the distance to the indenter tip, ρ. A quantity
of interest at the material point, *, can be envisioned to lie on a line that ends on the indenter tip and its deformation history is
accounted for by spatial integration along that line toward the tip. Essentially, the integration starts in the elastic region (say point 0)
far from the indenter tip, and ends at the point of interest, * (see Fig. 1). Thus, the point of interest, *, obtains the history through

Fig. 5. Stress distribution, around the moving contact points in wedge indented monazite, for the components; (a) /11 0, (b) /22 0, and (c) /13 0.
The contours are plotted in the self-similar coordinate system; x a/i i r= , where a a/ 1.04r l .

Fig. 6. Wedge indentation into a monazite single crystal showing left and right contact points and the associated angular paths.
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information stored in points further away from the indenter tip. This integration method ensures that the elastic-plastic material
response of the material is captured and also allows for potential elastic unloading.

Other than this tailored history integration, the framework adopted from Juul et al. (2018), relies on the conventional principle of
virtual work (PVW) for a quasi-static problem to determine the displacement field, ui;

V T u S Vd d d .
V ijkl kl ij S i i V ijkl kl

p
ij= +L L (9)

Here, T ni ij j= is the surface traction (nj denotes the unit outward normal vector), V is the volume of the domain, and S is the
boundary of the domain. The PVW is solved by employing the finite element method with 2D 8-node isoparametric elements using
reduced Gauss integration (2 2× Gauss points).

The implementation of the self-similar framework follows Juul et al. (2018), and the pseudo-algorithm is as follows:

1. Determine the displacement field, ui
n( ), by use of the plastic strains from the previous iteration, ij

p n( 1) (n is the iterative step).
2. Determine the total strains, ij

n( ) from the current displacement field, ui
n( ).

3. Initiate spatial integration scheme to determine the slip and plastic strains.
(a) The spatial derivatives are determined by applying the self-similar relation in Eq. (8) to the rate equations in the constitutive law.

c g
sgn( )

m( )
0
( )

( )
( )

( )

1/

=
(10)

Pij
p

ij

( )
( )=

(11)

Fig. 7. Angular stress distribution for monazite around the left contact point at a radius of; (a) r a0.15 l= , (b) r a0.25 l= , (c) r a0.35 l= , and (d)
r a0.45 l= away from the contact point.
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Fig. 8. Angular stress distribution for monazite around the right contact point at a radius of; (a) r a0.15 r= , (b) r a0.25 r= , (c) r a0.35 r= , and (d)
r a0.45 r= away from the contact point.

Fig. 9. Stress trajectory for monazite around the left contact point at a radius of; (a) r a0.15 l= , (b) r a0.25 l= , (c) r a0.35 l= , and (d) r a0.45 l= away
from the contact point.
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(b) The current slip, n( )( ), and plastic strains, ij
p n( ), are determined through spatial integration

d , and d .n
ij
p n ij

p
( )( )

( )
( )

( )

0

*

0

*

= =
(12)

4. The stresses ij
n( ) are updated through the relation; ij ijkl kl

e= L .
5. Repeat step 1 through 4, until convergence is obtained. Here, convergence is determined based on the displacement and stress
fields.

The iterative framework is initiated by using the elastic solution ( 0( ) = ) in the first iteration. Moreover, the implementation of the
framework relies on the modifications to the spatial integration suggested by Niordson (2001) and Nielsen and Niordson (2012). To
stabilize the evolution of related field quantities, substeps are introduced as additional points of evaluation in regions with steep
gradients between the Gauss points. As the total strain components, ij, are unknown between the Gauss points it is necessary to
interpolate the strains. In the present paper, it was chosen to interpolate the strain components by assuming a linear variation
between the Gauss points. This modification has proven to be particularly important when approaching the rate independent limit
(m 0).

5. Results

The effective in-plane slip systems of the monazite crystal, derived in Section 3.2, are oriented non-symmetrically with respect to
the external loading causing a non-symmetric in-plane deformation field and thus the entire domain needs to be modelled. The mesh
is constructed such that the contact points are located in a finely meshed region, in order to achieve sufficient resolution of the
results, while the mesh gradually becomes coarser when moving away from the contact point singularities (see domain in Fig. 4). For
the results presented in this study there is a total of 87,120 elements in the entire domain, where approximately 60,000 of the
elements are located in the “Fine mesh” region (see Fig. 4). Furthermore, it should be noticed that the rate-dependent model,
employed in the current study, cannot predict actual discontinuities but rather rays with a very narrow, but finite, width. However,
the rays will be denoted as discontinuities in the following.

5.1. Stress fields

The stress distribution for the wedge indented monazite crystal is first presented as contour plots in Fig. 5. Details on the stress
quantities in the vicinity of the moving contact point singularities are then extracted along different angular paths (see Figs. 7 and 8),
and lastly the stresses very near the contact points are presented as stress trajectories (see Figs. 9 and 10). The contour plots are
presented in a self-similar coordinate system, i, such that the right contact point singularity is always located at the coordinate

Fig. 10. Stress trajectory for monazite around the right contact point at a radius of; (a) r a0.15 r= , (b) r a0.25 r= , (c) r a0.35 r= , and (d) r a0.45 r=
away from the contact point.
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(1,0)i = . For the parameters chosen in this study, the monazite material has been found to have a hardness of H 5.2 0, by dividing
the sum of vertical reaction forces acting on the indenter by the projected contact area.

In contrast to the effective slip systems investigated by Saito et al. (2012) and Juul et al. (2018) (for FCC, BCC, and HCP crystals),
the stress distribution for monazite shows no symmetry with respect to the vertical indentation axis (see Fig. 5). This observation is
directly linked to the non-symmetric orientation of the slip systems, with respect to the indenter, and this drives the two contact
points to different locations relative to the center axis, 3. In fact, the ratio of the distance to the two contact points is found to be
a a/ 1.04r l . Thus, the left contact point is located the closest to the 3-axis which implies that it travels at a lower velocity compared
to the right contact point. Upon inspection of the stress contours, in the immediate vicinity of the contact points, it is seen that stress
rays emanate from these characteristic points similarly to the FCC, BCC and HCP cases. This suggests that an asymptotic solution
should exist close to the contact points in line with the predictions of Saito and Kysar (2011) for FCC and BCC crystals. In analogy, the
asymptotic solution of the tangential stress distribution is expected to be independent of the distance in the immediate vicinity of the
contact point while it is expected to break down further away.

To establish the asymptotic solution numerically, the angular variation of the stresses near the contact points are extracted by
employing inverse isoparametric mapping (Murti et al., 1988; Lim et al., 1992) within the finite element mesh (the angular paths are

Fig. 11. Slip rate, around the moving contact points in wedge indented monazite, for the slip systems; (a) c/(1) , (b) c/(2) , and (c) c/(tot) . The
contours are plotted in the self-similar coordinate system; x a/i i r= , where a a/ 1.04r l .
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illustrated in Fig. 6). The stress quantities are extracted at four different radii to confirm that the paths are within a region with small
radial variations (similar to the observations for FCC and BCC crystals). The stress quantities are presented in Figs. 7 and 8 for the left
and right contact point, respectively. Upon inspection of the angular stress variation, at the four different radii, it is seen that the
results gradually changes when increasing the radius. However, the region r a0.25< is considered to be governed by the asymptotic
solution due to the relatively small variation. From Figs. 7 and 8 it is also worth to notice that the stress components satisfy the
boundary conditions as 013 33= = at 0= (at the free surface) and 013 = at 180= (at the frictionless indenter surface).
Comparing the stresses of the left (Fig. 7) and the right (Fig. 8) contact points, it is found that the 13 components reaches ap-
proximately the same maximum magnitude. However, the right contact point reaches a higher level of 11, whereas the 33 component
is similar to the left contact point.

The stress trajectories for different radii are plotted in Figs. 9 and 10 for the left and right contact point, respectively, starting at
the star marker which is at the free surface ( 0)= , and moving to the indenter surface ( 180 )= . Comparing the stress trajectory
at the four different radii, it is seen that the characteristics of the trajectories gradually change, and again the two radii closest to the
contact point are reasonably similar (inside the region r a0.25< where the asymptotic solution is assumed valid). For the left contact
point (Fig. 9), it is observed that the stress trajectory moves in a counter clockwise direction towards the yield surface, whereafter it
stays on the yield surface before it reenters the elastic region and returns to the region in stress space where it started. For the right
contact point (Fig. 10), the stress trajectory moves in opposite direction (clockwise direction) towards the yield surface and then
remains on the yield surface approaching the vertex. However, before reaching the vertex, the stress state again reenters the elastic
region and approaches the starting point. Based on the stress trajectory extracted for both contact points, which only reaches the part
of the yield surface related to slip system (2), it is expected to observe a slip rate discontinuity on slip system (2) only. This will be
investigated in the following study of slip rates. Also notice that the stress trajectory stays on the yield surface in a small region due to
finite width of the ray caused by the rate dependent model.

5.2. Slip rate fields

The slip rate fields for the wedge indented monazite is first presented as contour plots, to give an overview of the activity of the

Fig. 12. Angular slip rate distribution for monazite around the left contact point at a radius of; (a) r a0.15 l= , (b) r a0.25 l= , (c) r a0.35 l= , and (d)
r a0.45 l= away from the contact point. The dashed lines indicates the potential location of the slip rate discontinuity on slip system (1) ( 76.79 ) and
slip system (2) ( 90 ).
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various slip planes in the vicinity of the moving contact points (see Fig. 11), and secondly as angular plots of the slip rate near the left
and right contact points (see Figs. 12 and 13, respectively) to share details on the activity. The main goal is to bring out the
discontinuities expected in the slip rate field, demonstrated by Drugan and Rice (1984); Rice (1987); Saito and Kysar (2011); Juul
et al. (2018) for FCC and BCC crystals.

Figure 11 displays the normalized slip rate on the two slip systems as well as the total slip rate (the sum A
A(tot) ( )= ). Even

though an analytical solution has not been established for monazite, discontinuities are expected in the slip rate field and the first
signs of a discontinuity on slip system (2) for both contact points have already revealed themselves when the stress trajectory was
investigated. By examining the slip rates, it is seen that the slip intensifies on slip system (1) along a ray emanating from the right
contact point along 103.21= (suggesting a kink shear ray), however, the ray never reaches the contact point and the stress
trajectory close to the contact point does not reach the yield surface for slip system (1). Thus, this is not a discontinuity related to the
asymptotic solution. Instead the very limited activity on slip system (1) is an artifact of the far field conditions. When inspecting the
activity on slip system (2) it is seen that a discontinuity arises at 90= (forming a glide shear ray), which is evident at both the left
and right contact point corresponding to the predictions from the stress trajectory. Furthermore, by comparing the slip rate on slip
system (2) at the two contact points it is seen that they are within the same order of magnitude (see Fig. 11a). From the total slip rate
in Fig. 11c, the interaction between slip system (1) and (2) is obvious in the right half of the domain (even though the activity on slip
system (1) is not related to the asymptotic solution).

The angular variation of the slip rates near the two contact points is investigated closer in the following by using the same inverse
isoparametric mapping scheme employed for the corresponding plots of the stress quantities (see the angular path in Fig. 6). The slip
activity indicates the location of the sector boundaries as it divides regions into either elastic or plastic regions. The slip rates are
presented in Figs. 12 and 13 for the left and right contact point, respectively. Inspection of the left contact point in Fig. 12 reveals two
spikes in the slip rates, however, the spike on slip system (1) is of negligible magnitude as was also observed in Fig. 11a, and hence it
should not be interpreted as evidence of a discontinuity. On slip system (2), the predicted discontinuity is clearly seen at 90= ,
and this discontinuity maintains its orientation at the different radii of data extraction indicating that the asymptotic solution
stretches far into the domain even though its theoretical validity is expected only to hold near the contact point.

For the right contact point (in Fig. 13), the same clear spike is seen for slip system (2) at 90= , as expected. For slip system (1)

Fig. 13. Angular slip rate distribution for monazite around the right contact point at a radius of; (a) r a0.15 r= , (b) r a0.25 r= , (c) r a0.35 r= , and (d)
r a0.45 r= away from the contact point. The dashed lines indicates the potential location of the slip rate discontinuity on slip system (1) ( 103.21 )
and slip system (2) ( 90 ).
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a spike is again observed, but its magnitude is very low and is not oriented at the expected angle. This also supports the previous
conclusions, stating that a discontinuity on slip system (1) emanating from the contact point does not exist. At the largest radius of
data extraction, the activity on slip system (1) starts to increase, however, the spike is still not located at the expected angle and is not
related to the asymptotic solution which is in focus here.

6. Concluding remarks

Numerical simulations of 2D wedge indentation in an elastic, perfectly plastic monazite single crystal have been carried out. The
main focus in the numerical analysis was to investigate the material behaviour in the immediate vicinity of the moving contact point
singularities. The variations in the deformation, stress, and slip rate fields lead to the following key findings:

• Indentation in the monazite crystal reveals a non-symmetric deformation field. This is seen by the contact length and velocity of
the left and right contact points being different. For the monazite crystal, with the given parameters, the right contact point travels
faster than the left contact point, with a constant ratio of a a/ 1.04r l , between the contact lengths.
• The stress distribution in the vicinity of the contact point singularities exhibits a non-symmetric field around the indenter. By
investigating the angular variations in the stress field it is seen that, in the immediate vicinity of the contact points, an asymptotic
field exists independent of the distance to the singularity. This is in-line with the findings of Saito and Kysar (2011) for FCC and
BCC crystals. The stress trajectory for the monazite shows regions where the path reaches the yield surface, implying the existence
of two elastic sectors.
• The numerical simulation reveals the existence of discontinuities in the slip rate, similar to those predicted by Saito and Kysar
(2011) for FCC and BCC crystals. For the monazite crystal, a discontinuity parallel to slip system (2), causing glide shear, was
predicted at both contact points with the activity on slip system (2) being on the same order of magnitude. Slip system (1) was
essentially found to be inactive near the contact points and did not indicate any discontinuities.
• For the parameters chosen in this study, the monazite material has been found to have a hardness of H 5.2 0.

Based on numerical calculations, a sector structure for the monazite material, similar to the analytical structure predicted by Saito
and Kysar (2011) for FCC and BCC, is suggested in Fig. 14. Here, the material behaviour is divided into two elastic sectors around
each contact point.
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