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Abstract Electron Backscatter Diffraction (EBSD) based
Orientation Imaging Microscopy (OIM) is used routinely
at ~500 materials laboratories worldwide for the character-
ization and development of diverse crystalline materials.
Statistically significant data sets (~10 individual EBSD
measurements) can be collected and analyzed within time
periods of acceptable beam stability (~10%s). However,
limitations in angular and spatial resolution have motivated
a continued search for more robust EBSD-based methods.
Herein is a gathered presentation of advanced techniques in
use, intended as a guide to researchers in selecting the most
appropriate method for their work. Wilkinson’s method has
been shown to increase angular resolution nearly two orders
of magnitude to +0.006°, facilitating measurement of elastic
strain, lattice curvature, and dislocation density. A simulated
pattern adaptation of Wilkinson’s method extends these
measurement capabilities to polycrystalline materials, by
avoiding the need for an experimental strain free reference
pattern. The angular resolution limit obtained is ~0.04°.
Accurate pattern center calibration, essential to the high
resolution methods, is accomplished by parallelization of
band edges projected onto a sphere centered at the interaction
volume. FFT powered cross-correlation functions improve the

C. Gardner (><)) - J. Kacher - J. Basinger + B. Adams
Department of Mechanical Engineering,

Brigham Young University,

435 CTB,

Provo, UT 84602, USA

e-mail: CalvinJGardner@gmail.com

M. Oztop - J. Kysar (SEM member)
Columbia University,

500 W. 120th Street,

New York, NY 10027, USA

spatial resolution near grain boundaries and correct for
measurement inaccuracies induced by overlapping patterns.
To corroborate these claims, exemplary results taken from a
wedge-indented nickel single crystal, cold-worked copper
polycrystal, and rolled nickel polycrystal are shown.

Keywords Cross-correlation - EBSD - OIM - Pattern
center - Simulated pattern method - Wilkinson’s method

Introduction

Significant progress in materials development strongly
correlates with advances in observational capabilities. One
example among many that could be cited is the recent trend
to examine the microstructure characteristics of fatigue
crack initiation sites. The ability to characterize the local
crystal phase and orientation field, occurring at an observed
site of fatigue crack nucleation, opens the door to studies of
the local response fields (stress and strain), and their co-
location with dislocation slip activity, weak interfaces and
other characteristics [1, 2]. These correlations, which are
currently proving to be fruitful in the study of damage
physics, would not be possible without the advances in
microscopy capable of resolving lattice phase and orienta-
tion at the micron scale.

Crystallographic information is swiftly obtained by
directing a stationary electron beam at a tilted sample and
analyzing the resulting pattern of diffracted electrons. The
diffraction pattern is characteristic of the area from which it
originated; and with the advanced capabilities described in
this paper, can be used to measure crystal orientation,
differentiate material phase, locate grain boundaries, mea-
sure interface misorientation, map elastic strain, determine
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lattice curvature, recover the geometrically necessary
dislocation density, and locate minuscule cracks and
imperfections in the material. If measurements of these
properties are of sufficient accuracy and precision, a new
world of application specific material design is open to
engineers. At present, commercially available Orientation
Imaging Microscopy (OIM) systems are commonly used to
quickly determine crystal orientation and map grain
structure. However, the angular resolution in lattice orien-
tation of standard OIM is limited to ~0.5° and the spatial
resolution to approximately 100 nm [3, 4]. While standard
OIM is satisfactory for many applications, in order to
obtain more complete information about material micro-
structure, advanced techniques must be employed.

Each grouping of diffraction patterns has associated with
it an information set containing much of the potential
knowledge that may be garnered from the patterns. This
information is contained in the angles, widths, clarity, and
intensities of the Kikuchi bands, in addition to their relative
shifts and imperfections. The purpose of this paper is to
outline, discuss, and provide examples of various advanced
techniques used to improve angular, spatial, and strain
resolution for the measurement of geometrically necessary
dislocation, grain boundary location, lattice curvature,
orientation, and elastic strain. Wilkinson’s method, and its
simulated pattern adaption in particular, will be discussed in
detail.

Materials and Methods
EBSD Overview

Before delving into the particulars of diffraction pattern
analysis, a basic overview of EBSD is provided. An EBSD
system consists of a Scanning Electron Microscope (SEM),
a sample tilted at 70° from the horizontal, and a phosphor
screen with a CCD (Charge Coupled Device) camera to
view the diffraction patterns. For EBSD, a beam of electrons
is directed to a point of interest on a tilted crystalline sample
as shown in Fig. 1. The incident electrons are diffracted from

Fig. 1 Schematic of SEM. The pole '
electron beam from the pole piece
piece diffracts off the sample e
and forms a pattern on the m \
screen of the EBSD detector. il
Figure courtesy of TSL ii'iiﬁi | )
Sample

planes within the crystalline sample according to Bragg’s
Law. Diffracted electrons from a particular plane form a
pair of wide angle cones. When these cones intersect the
fluorescent phosphor screen the intense area between them is
known as a Kikuchi band. The center-line of a Kikuchi band
nominally corresponds to the intersection of the diffracting
plane with the phosphor screen. Therefore, each band may
be indexed by its Miller indices with each intersection of
band-pairs labelled by the common zone axis.

Patterns are commonly indexed automatically utilizing a
Hough/Radon transform to represent Kikuchi band posi-
tions. A line co-linear with the Kikuchi band becomes a
point of intensity in Hough space as given by the following
equation:

r(0) =xcos @+ ysin@ (1)

where x and y correspond to a point on the line. Each point
along the line produces a trigonometric function and all the
functions from a particular line will intersect to form a
distinct point; when multiple lines are considered an
intensity spot of finite size occurs, having the characteristic
butterfly shape of the trigonometric functions demonstrated
in Fig. 2. The peak is located at the angle 6, that forms a
perpendicular intersection to the Kikuchi band, and the
radial distance ry at that angle. Therefore, the Hough
transform of a measured pattern consists of numerous
intensity peaks spread across Hough space with each
peak corresponding to one Kikuchi band in the pattern.
Knowledge of the diffraction planes in the crystal lattice is
then used to index the pattern and obtain the associated
crystal orientation.

The limiting factor of traditional OIM’s spatial resolution
is the size of the interaction volume (the sample volume
that diffracts electrons to the phosphor screen), which is
primarily dependent upon the electron beam accelerating
voltage, material atomic number (typically, larger Z-
numbers result in smaller interaction volumes), sample tilt,
and probe current [5, 6]. The EBSD pattern recorded and
indexed by traditional OIM is actually an average of the
information contained within the interaction volume. Using
known parameters the approximate interaction volume
diameter can be simulated, and has been found by various
authors to be in the range of 50-100 nm for heavier metals
(Fe, Ni, Cu) and 100-200 nm for lighter metals (Al, Mg)
[7, 8]. The concomitant spatial resolution is dependent on
how precisely mixed patterns near grain boundaries can be
distinguished, and is often approximated as half the
interaction volume diameter [9]. Further, the angular
resolution of OIM depends upon the measurement of the
Kikuchi band position, and is in the range of+0.5° [3, 4].
Unfortunately, for small misorientations the angular uncer-
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A Kikuchi Band becomes an Intensity Peak in Hough Space.
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Fig. 2 The Hough Transform: A line from the EBSD pattern is converted to an intensity peak in Hough space. Points A-E on the left correspond

to functions A-E on the right

tainty in individual measurements propagates into large
errors in determining the misorientation axis. Bate et al.
have developed an analytical relationship for the expected
error [8]:

o = arean | )

where ¢ is the error in the misorientation axis, J is the
orientation measurement error, and ¢ is the angle of the
misorientation being measured. Obviously, for small angles of
misorientation even small errors in orientation measurement
propagate into large errors in the misorientation axis. These
errors are reduced significantly by Wilkinson’s method.

Wilkinson’s Method Overview

The work of Troost et al. and Wilkinson et al. has greatly
improved the angular resolution of EBSD analysis [10, 11].
Their cross-correlation based method increases angular
sensitivity by two orders of magnitude beyond the Hough/
Radon transform. This enhanced resolution is an extremely
important advance. For example, the improved resolution
can separate some of the cubic coincidence site lattice (CSL)
boundaries, such as > 13b and Y 17a which differ by only
0.3° and Y7 and >'9 which differ by 0.7°. Proper distinction
of the minimum axis of rotation also augments the reliability
of CSL determination. And the reduced error in misorienta-
tion axis determination is sufficient to enable an estimation
of lattice curvature, to recover some components of Nye’s
dislocation tensor [12]. Moreover, increased accuracy facil-
itates the partial recovery of the elastic displacement gradient
tensor (the entire tensor is recovered if appropriate traction-
free boundary conditions are imposed).

Wilkinson’s method compares two measured EBSD
patterns utilizing the small shifts in position of pattern
features to determine the difference in strain and orientation
between the patterns. Therefore, in order to obtain absolute
measurements, one of the two compared patterns must be a
strain free reference pattern at (or near) the correct
orientation. The patterns are compared by selecting a
number of regions of interest (ROIs) distributed over each
pattern. The cross-correlation between ROIs in the refer-
ence and experimental patterns are then calculated using
Fourier Transforms as follows:

C =373/} *eoni(3{g})} (3)

where 3{ } is the Fourier transform, conj( ) is the complex f
conjugate, and g are corresponding ROIs from the two
patterns, * indicates the element wise multiplication of
matrices, and C is the resulting image. The line emanating
from the pattern center to the peak in each of the ROI cross-
correlations gives the shift vector ¢ (measured on the
phosphor) for that ROI. Interpolation methods are used to
obtain sub-pixel resolution. It should be noted that proper
filtering of the measured EBSD pattern, to remove dark
spot defects and non-uniform intensity, is required to obtain
accurate shift vectors [13—15]. After filtering, the shift is
assumed to be equal to the average shift in the center of the
ROI and is measured perpendicular to 7 (the unit vector
pointing from the specimen origin to the ROI center on the
phosphor screen). The components of the shift at the center
of each ROI are related to the components of the
displacement gradient tensor D by the expression:

g= D7~ (DP -7 )
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where u=(uy, u,, u3) is the displacement at the position x=
(x1, x5, x3). Combining equations for components of ¢
results in two simultaneous equations [16]:
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single unknown for a total of eight unknowns in the two
equations. Therefore, shift measurements must be made for
at least 4 ROIs to obtain a solution to the simultaneous
equations. Any additional ROI measurements are used in a
standard matrix least squares method to determine the best-
fit solution. It should be noted that experimental recovery
of the full displacement gradient tensor necessarily assumes
only elastic deformation to have occurred.

Unfortunately, Wilkinson’s method cannot fully resolve
the terms on the diagonal of D. Since a spherical dilation of
the crystal lattice generates no shift in the EBSD patterns,
only the differences between the diagonal terms can be
determined. Though, with knowledge of the crystal elastic
constants, traction-free boundary conditions may be ap-
plied, consistent with the presence of the free surface of the
sample, and the final of the 9° of freedom can be resolved.

Once the displacement gradient tensor is determined it is
a simple step to find the strain tensor and the rotation tensor
as follows:

and

- (% _ 9y > (7b)
2\0x; Ox;

where €, the infinitesimal strain tensor, is the symmetric part
of D, and w, the infinitesimal rotation tensor, is the anti-
symmetric part. Wilkinson concluded (and the authors have
confirmed) that by using the cross-correlation method to
compare patterns directly the components of the strain and
rotation tensors can be determined to a resolution of £107*
consistent with a misorientation resolution of £0.006°. This
is an improvement of nearly two orders of magnitude over
the standard Hough/Radon transform method.

Wilkinson’s method represents a substantial advance in
the angular and strain resolution of EBSD analysis and
opens the door for accurate analysis of lattice curvature,
elastic strain, and geometrically necessary dislocation
(GND) densities. However, without a strain free pattern
the Wilkinson method is limited to measuring gradients of
elastic strain and lattice orientation rather than absolute
values. This makes comprehensive application of Wilkin-
son’s method to a polycrystalline sample difficult, particu-
larly for small grain sizes and plastically deformed samples.
The simulated pattern method presented in the recent work
of Kacher et al. offers a solution to these difficulties [17].

Simulated Pattern Method Overview

In order to avoid the difficulty of obtaining a strain free pattern,
it is possible to use a simulated reference pattern. Because high
fidelity simulations are computationally expensive [18], the
simulated pattern method uses a simple kinematical model
(Bragg’s Law based) to generate a strain-free reference
pattern. By iteratively generating these simple patterns at
each calculated deformation state of a measured pattern, and
then repeating the calculation with the new simulation, a high
resolution result is rapidly found by convergence.

The deformation tensor F, which is related to D by the
expression F=D+I, determines how diffraction cones are
oriented with respect to the phosphor frame and may also
alter the inter-planar spacing dj;;. Combining the equation
for a cone with the various parameters determining

- 1 Ou; n Ou; (7a) orientation and intensity results in the following equation
) Ox;  Ox; for a simulated Kikuchi Band [17]:
SZ c—Co v—c= |2 c—co voc=] )2 > ([RCQCOFR‘HCﬁh) ’
B(B,F, R, R, (hkl)) = { Shh S(RFR™P,)" + ([RFR™pl,)” > an@ (8)

0

otherwise
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where B is the simulated band, p represents a point in the
phosphor screen reference frame v, R'¢ is the rotation
tensor from the phosphor screen frame to the crystal frame
¢, R°7 is the rotation tensor from the crystal frame to the
cone reference frame co, (hkl) is the chosen diffraction
plane, 0 is the cone angle, and S} is the structure intensity
factor. Summing the contributions of each band and its
symmetry variants generates the complete approximation of
the EBSD image, thus:

1G.0) =3, B(5.F.59, (hkt)") 9)

where I is the composite image, S are the elements of the
symmetry subgroup, and (hkl)? are the elements of the set
that includes all of the considered diffracting planes. The
final composite pattern is then filtered using high and low
pass filters to more accurately reflect variation in the
measured EBSD pattern background.

The simulated pattern analysis algorithm begins by
measuring a local lattice orientation to within 0.5° using
the Hough transform method of standard OIM. A simulated
pattern is then generated from the known crystal structure
and the Hough transform estimate of the orientation. Cross-
correlation analysis as described above is used to compare
the ROI shifts from the simulated pattern and the measured
EBSD image as illustrated in Fig. 3. The deformation tensor
is calculated using geometric relationships and the traction
free boundary condition. The fit of the deformation tensor
is evaluated by calculating the average error or difference
between measured and calculated shifts. Finally, a new
pattern is simulated at a deformation state closer to the
actual state of the material. This process is repeated
iteratively until the deformation converges as close as
possible to that of the actual lattice structure.

At present, the resolution of the simulated pattern
method does not reach the level of Wilkinson’s method.
The simulated pattern method can determine the strain and
rotation tensors to a resolution of +7%10* indicating a

Fig. 3 Measured pattern and a
simulated pattern with 20 ROIs
outlined for comparison

misorientation resolution of £0.04° [17]. However, though
the Wilkinson’s method is more accurate, the simulated
pattern method readily extends the high resolution advan-
tages to polycrystalline and deformed samples where
Wilkinson’s method becomes difficult.

Pattern Center Calibration

The pattern center is defined as the intersection of a vector
originating from the electron beam/sample interaction point
and normal to the plane of the phosphor screen. In order to
accurately simulate EBSD patterns for the simulated pattern
method, the pattern center must be accurately known to
within 1/10th of a pixel [19]. Any error in pattern center
calibration propagates into error in the shifts measured by
the cross-correlations and results in erroneous measure-
ments of elastic strain and orientation. Indeed, Villert et al.
have demonstrated that variation in pattern center parame-
ters leads to artificial measurements and increased error
[20]. The cross-correlation function is sensitive to sub pixel
shifts in the ROIs. In order to maintain the resolution
capabilities of the simulated pattern method, the pattern
center must also be calibrated to sub pixel resolution. While
standard EBSD analysis software typically calibrates the
pattern center with a least squares best fit approach, high
resolution cross-correlation methods require higher accura-
cy calibration.

The necessary accuracy may be obtained by realizing
that diffracted electrons create a pattern of bands with
parallel edges centered upon great circles of any sphere
emanating from the interaction volume (see [21] for an
overview of spherical EBSD). The flat phosphor screen
distorts these bands such that the band edges no longer
appear parallel. But, if the correct pattern center is known,
then mapping a collected pattern onto a sphere centered at
the interaction volume (as given by the pattern center) must
result in a pattern with parallel band edges centered on a
great circle. Conversely, if the assumed pattern center is
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incorrect, then mapping onto a sphere will not result in
parallel band edges centered on great circles.

Several methods for automated pattern center determi-
nation are currently in progress and will be described with
greater detail in an upcoming specifically dedicated paper.
Only a basic overview of one method is included here.
Figure 4 shows a collected EBSD pattern which has been
mapped onto a sphere using an assumed pattern center
location. Simple Bragg’s law simulated band edges are
overlain on the sphere and artificially widened to ensure
capture of the collected bands. For each simulated band that
intersects the actual EBSD pattern, the intensity profile is
calculated within the simulated band edges by averaging
the intensities down the length of the band in small steps
moving from one edge to the other. The typical/desired
band intensity profile has a central peak with a maximum
near the great circle and two troughs equidistant from the
center. Various indirect measures of parallelism may be
applied to the calculated intensity profiles including: peak
intensity maximization, trough intensity minimization, peak
to trough difference maximization, trough separation
minimization. Such measures have been applied success-
fully to strain-free single crystal germanium [22, 23].

The right half of Fig. 4 portrays an element of the search
space generated by the parallelism approach to pattern
center calibration. Optimization may generally be per-
formed discretely through a genetic algorithm, simulated
annealing, etc.... It should be noted that only two of the six
relevant search space parameters (x*, y*, z*, ¢, ®, ¢,) are
presented in Fig. 4 and, although the search space appears
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decidedly smooth at the presented scale, a finer scale
reveals a rougher surface. However, at least in the case of
single crystal germanium, the noise level of the search
space does not prevent a sufficiently accurate pattern center
determination.

Measurements: Elastic Strain, Lattice Curvature,
and Dislocation Density

At this point a discussion on the relevance and calculation
of elastic strain, lattice curvature, and dislocation density is
requisite.

For small strains, the elastic strain tensor is simply the
symmetric part of the displacement gradient tensor, as given
in equation (7a). Knowledge of the elastic strain present in
a material is important to possibly resolve the probable
failure modes and strain concentration points. The remain-
ing anti-symmetrical portion of the displacement gradient
tensor is the material rotation tensor. As discussed by El-
Dasher et al., the crystal lattice rotation accounts for a
portion of the material rotation [24]. The crystal lattice
curvature tensor follows directly from the lattice rotation
and as defined by Nye [12] is:

kin ki ki
k= |kn ko o (10)
k31 k3o k33

where k; = 06;/0x; and the terms 6,, 6,, and 65 are the
lattice rotation about the x;, x;, and x5 coordinates. Clearly,
only the first two columns of the curvature tensor can be
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Fig. 4 Parallelism method for pattern center calibration with part of the search space shown on the right. The true pattern center is located at the
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obtained from a two-dimensional scan. Access to the third
column requires knowledge of local lattice orientation
variations perpendicular to the plane of investigation. In
the reference state, the lattice curvature is assumed to be
zero everywhere, thus the measured curvature is the same
as the gradient of lattice rotation.

Nye’s dislocation density tensor «y; is related to the
lattice curvature tensor as follows (note that the Einstein
summation convention is used here and throughout all
following discussions):

1
ki = —ay + 5 S0 — € €y (11)

where §; is the Kronecker delta, and 51?,(’] is the /th
derivative of the elastic strain tensor [25]. Therefore, lattice
curvature results from the presence of dislocation networks
possessing a net Burger’s vector, and also from gradients in
the elastic strain tensor. Equation (11) implies that the
values of three components («;3) of the dislocation density
tensor can be determined with certainty from the 6
accessible curvature components. The other 6 components
are obscured by material opacity. If it is determined that the
elastic strain gradient terms are negligible, in comparison to
the lattice curvatures, than, as Pantleon pointed out, for
small misorientations the «,, «5;, and the difference
between the «y; and «,, components are also available
[26]. Tt has been the experience of the authors that the
elastic strain gradient terms are a factor of ~6 times smaller
than the lattice curvature terms [27].

The dislocation density tensor consists of the dislocation
densities multiplied by the Burger’s vector and associated
unit line direction, summed over all dislocation types
present [24, 25]. Presented formally:

K /\k
ay =Y . bz (12)

where p" is the density of dislocations of type k, b is its
Burger’s vector, z¥ is its unit tangent line direction, and
there are K types of dislocations present. Generally the
recovery of the full set of p* cannot be completed without
ambiguity. The number K of possible dislocation types
depends on the geometry of the crystal lattice and the
particular dislocation types considered (screw, edge, etc.).
Consequently, the number of dislocation types that should
be considered usually exceeds the number of components
of the dislocation density tensor that are available; and the
independent dislocation densities cannot all be determined
by inversion of equation (12) [25, 27]. Since at most 5
components of «; are accessible from two-dimensional
scans, the equation is underdetermined and a surfeit of
potential solutions exists. Further, there generally are many
combinations of Burger’s vectors and line directions that
support an arbitrary dislocation tensor; therefore, an infinite

variety of network types can be envisaged to support the
same lattice curvature.

Still, while the exact solutions for dislocation densities
are inaccessible, it is possible to solve for a set of densities
that satisfies the lattice curvature and minimizes the total
required dislocation density. The solution is defined as the
geometrically necessary dislocation density and is a lower
bound to the solutions of equation (12) (note that the upper
bound is infinite) [25, 28]. Knowledge of the lattice
curvature and the local geometrically necessary dislocation
densities within a material offers information on the stress
distribution, provides insight into the deformation mechan-
ics, and indicates likely failure points.

Combining Methods

Wilkinson’s method is more accurate than the simulated
pattern method and is well suited to measuring gradients.
The simulated pattern method is more versatile for
polycrystalline scans and measures absolute orientation
and strain. Combining the two methods using a custom
scan pattern takes advantage of the strengths of each
method, providing for accurate measurements of curvature
gradients within grains and absolute measurements of
elastic strain from grain to grain without requiring multiple
strain free reference patterns.

A custom scan pattern like the one in Fig. 5 consisting of
closely spaced five-point cross-grids in an evenly spaced
hexagonal or square distribution takes full advantage of the
two methods. The center points (or other corresponding
points) of each cross-grid can be treated separately as a
normal scan, and the simulated pattern method can be
applied to measure absolute values of elastic strain and
rotation. Wilkinson’s method is then used to make local
estimates of lattice curvature utilizing the five point cross-

Fig. 5 Schematic of the Cross-Grid method for utilizing both the
Simulated Pattern method and Wilkinson’s method
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grid. Since curvature is a gradient measure, a strain free
pattern is not required and the superior accuracy of
Wilkinson’s method is well applied in finding the curvature
and geometrically necessary dislocation density. Obviously,
if any two points in the cross are not in the same grain, the
calculation is compromised. If temporal limitations are a
factor, a five-point grid need not be used. A three-point L-
shape provides the same opportunity to use Wilkinson’s
method for gradient measurements within a grain. However,
the five-point grid allows for accuracy-increasing averaging if
desired.

Combining the simulated pattern method and Wilkinson’s
method takes maximum advantage of the available techniques
in EBSD analysis to achieve high angular resolution data.
Still, neither method increases the spatial resolution of scan
data. The following section deals with increasing spatial
resolution.

Grain Boundary Spatial Resolution

There exists a finite interaction volume associated with the
electron beam. The diameter of the interaction volume
depends primarily on the probe current, the sample
material, and the accelerating voltage, and is on the order
of 100 nm. When the beam scans across a grain boundary,
the interaction volume is composed of two or more grains.
The resulting EBSD pattern will be a mixture of the
patterns from each grain similar to the pattern in Fig. 6, and
an additional random noise component associated with the
disturbed atomic positions in the interface. Even without
any consideration of the random component, the over-
lapping patterns result in a pronounced decrease in image

Fig. 6 When the electron beam rasters across a grain boundary
portions of the interaction volume will be in separate grains resulting
in a mixed pattern that cannot be indexed without adjustment. Figure
courtesy of TSL

SEM

quality. Additionally, any attempts to analyze an overlapped
pattern with either Wilkinson’s or the simulated pattern
method will likely result in incorrect measurements of
strain and rotation as the wrong pattern features are tracked.
Correctly separating one grain’s contribution to the over-
lapped EBSD pattern increases spatial resolution and allows
for improved accuracy in the study of regions near grain
boundaries and triple junctions.

Kacher et al. proposed the following method for
increasing spatial resolution near grain boundaries [29].
To separate a mixed pattern, pristine reference patterns from
each of the contributing grains are selected. Each of the
reference patterns are then cropped and filtered to secure
the highest quality section. A cross-correlation (equation
(3)) between the mixed EBSD and the pristine filtered
reference patterns shows the fraction of each reference
pattern present in the mixed pattern. The zero-shift value of
the cross-correlation represents how well the images
correspond. The non-dominant reference images are then
subtracted out of the mixed pattern leaving only the
dominant pattern behind. Finally, the intensity of the
remaining image is normalized to correspond with the
intensity range found in the unaltered measured patterns.
Subsequently, the pattern can be analyzed in the conven-
tional way.

While this method improves the spatial resolution of any
scan crossing a grain boundary, it does not necessarily
locate the grain boundary exactly at the surface if the
investigated boundary is heavily inclined. Because the
electron interaction volume extends 10—40 nm below the
surface, the point where the dominant pattern switches
occurs when equal amounts of electrons are returning from
each grain [30]. Depending upon the inclination of the
boundary, this point could be arbitrarily shifted. However,
regardless of the boundary inclination, the pattern separa-
tion method improves measurement accuracy with the
highest spatial resolution obtained being an average of half
the interaction volume at the grain boundary. Separating
patterns allows orientation measurements to be taken right
up to the very edge of the grain boundary. While other
phenomena, such as dislocation pileups at grain boundaries,
can cause a decrease in image quality and consequently
limit spatial resolution, if a discernable pattern is acquired
(mixed or not) accurate measurements can be taken.
Figure 7 shows the results of a simulation demonstrating
the accuracy attainable by pattern separation. The labelled
ESBD patterns 1-5 represent a series of artificially mixed
images with intensity filtering and image quality adjust-
ments to represent actual patterns near a grain boundary
(without a random component). Pattern 1 is unmixed (but
contains elastic strain), pattern 2 contains 75% of pattern 1
and 25% of pattern 5 (also containing elastic strain), pattern
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Fig. 7 Effect of pattern separation at various levels of pattern mixing on components of the elastic strain tensor

3 is split evenly between 1 and 5, etc.... Each mixed
patterns was separated and measurements were made using
the simulated pattern method. Ideally, the elastic strains
represented in the figure would not vary across the patterns,
but as expected, the smaller the percentage of an unmixed
pattern contained in a mixed one, the greater the measure-
ment error. Still, at 25 and 50% mixing, a majority of the
separated measurements compare favourably with the
unmixed values.

Experiments

For this work, the above techniques were applied to three
samples, each of which will be presented here as
examples of the information obtained by advanced EBSD
analysis. The first example deals primarily with calcula-
tion of the elastic strain tensor, the rotation tensor, lattice
curvature, and geometrically necessary dislocation densi-
ty. The second example is more concerned with advan-
tages of the combined L-grid scanning method. And the
third scan deals specifically with pattern separation at
grain boundaries.

Single Crystal Nickel Indentation

The first experiment is a wedge indentation which is
subjected on a single crystal nickel sample. The geometry

of the problem is designed such that only three effective in-
plane slip systems exist. Rice showed that plane deforma-
tion conditions are satisfied when a face centered cubic
crystal is subjected to a line loading parallel to a [110]
direction. The experiments and sample preparation for
EBSD were done on a Nickel single crystal sample by J.
W. Kysar’s group at Columbia University. The EBSD scans
were done at BYU. Two scans of the indented sample were
examined: the first is a 100 um square scan with a 500 nm
step size, and the second is a smaller 10 pm by 5 pm scan
with a 50 nm step size. Maps of the resultant elastic strain
tensor are given in Fig. 8. Note that the wedge penetrates
the sample from the bottom center position of these figures.
The first maps give the diagonal components of the strain
tensor and the second three the off diagonal. It can be seen
that the indentation and ensuing structural changes result in
regions of residual elastic compression and tension in a
wide ranging area extending beyond the borders of even the
larger scan. Additionally, the most strongly affected regions
appear to have a structure of contrasting elastic strain, from
left to right in each example. It is instructional to note the
regional interdependence of the various strain components.

In addition to the elastic strain tensor, the lattice rotation
was determined by comparing the as-deformed orientation
of the crystal lattice to its known orientation in the
undeformed reference state as discussed in [31]. Figure 9
shows the 6. component of the rotation tensor in degrees.
The larger scan shows how the lattice tends to curve out

SEM
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Fig. 8 Mapped components
of the elastic strain tensor
ranging from —0.01 to 0.01

away from the centrally affected region and how stark the
difference is on either side. This region of rapid change in
lattice rotation was identified in a previous study using a
spatial resolution of 3 microns [32]. The higher spatial
resolution analysis herein showed that the change in lattice
rotation is not discontinuous, but the lattice curvature is
very high. Knowledge of the rotation tensor, leads easily to
calculations of the lattice curvature as defined by equation
(10). While it is possible to display the components

100

20

0 20 40 60 80
x; (um

Fig. 9 6. component of the rotation tensor mapped across a 100 um square area and a 5 pum by 10 um area respectively

SEM

individually, the sum of the magnitudes of the six available
curvature components is mapped in Fig. 10. The summed
curvature increases sharply near the highly deformed
central areas and could signal a probable propagation path
of material failure in components where similar features
might occur.

Finally, from knowledge of lattice curvature it is possible
to calculate a lower bound of geometrically necessary
dislocations. Kysar et al. derived the least L*-norm
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solutions to the geometrically necessary dislocation densi-
ties for the special cases where there are three effective in-
plane slip systems [33]. Figure 11 shows that the density of
GND’s is much higher through the central area. The high
gradient in lattice rotations in this region results in
accumulation of dislocation densities. Further, there appears
to be a characteristic length scale to the concentrated region
of GND’s on the order of ~1 wum. In this particular sample,
the width of the densest regions is consistent, whether near
or far from the indentation point.

Cold-worked Polycrystalline Copper Sample

In addition to the single crystal indentation experiment, a
second experiment was performed on a polycrystalline 58
percent cold-worked copper sample. The sample was
polished and scanned utilizing an L-grid scanning pattern
to obtain increased measurement accuracy in a reasonable
scan time. The scan area is 100 um square, with a 1 pum
step size between L-grid center points and 100 nm spacing
between points within each grid. Thus, identical measure-
ment resolution in a square scan of similar size would have
required one million individual scan points. However, using
the L-grid technique, only 30 thousand points were
required; a remarkable 97 percent increase in efficiency
with minimal loss of usable information. Wilkinson’s
method was used to determine the lattice orientation
gradient within grains and the simulated pattern adaptation
was used to obtain absolute measurements of strain and
rotation across the polycrystalline sample. The resultant
false color grain map is shown in Fig. 12.

The elastic strains over the entire sample were obtained
using the simulated pattern method. Some components are
presented in Fig. 13. It is interesting to note the rather
uniform strain distribution across each particular grain
interior while wide variations exist near boundaries.
Additionally, the lattice curvature was calculated using
Wilkinson’s method using the L-grid. Figure 14 shows the

Fig. 10 Summed available components of the curvature

mapped sum of the absolute magnitudes of the six
obtainable components of the curvature tensor. Wide
variations in the curvature occur near grain boundaries as
expected. Additionally, the interior concentrations of
curvature variation are likely due to a distributed pattern
of internal dislocation cell structures resulting from the
material rolling.

Rolled Polycrystaline Nickel Sample

Finally, the pattern separation method was employed on a
set of consecutive points (across a grain boundary) from a
polycrystalline nickel line scan to illustrate the increased
measurement accuracy available. As described in the final
portion of the Materials and Methods segment, the cross-
correlation of mixed patterns at the grain boundary with
ideal reference patterns from each respective grain was
performed. Upon comparison of the intensity peaks, a
decision was made and the secondary part of the mixed
pattern was subtracted out. One of the mixed patterns and
two reference patterns are shown in Fig. 15. In this
particular case, cross-correlation revealed that the grain on
the right was the main contributor to the mixed diffraction
pattern and therefore the left reference pattern was
subtracted.

Mixed patterns result in errors and inaccuracies for the
recovered strain and the rotation tensors, which increase as
the beam approaches the interface. Without pattern separa-
tion, the measured values of strain and rotation may be
artificially low or high. While it goes beyond the purposes
of this paper to delve into the changes upon each
component of the strain and rotation tensors at one
particular grain boundary, suffice it to say that pattern
separation has a significant effect on the measurements at
and near grain boundary interfaces. Figure 16 provides one
example: pattern separation reveals that the un-separated
measurement of e,, is artificially low, particularly just
before and after crossing the grain boundary. Further, the
location of the grain boundary is ~1 pm further along the
progression. The change in grain boundary position is large
when compared to the estimated ~100 nm spatial resolu-
tion, however, the discrepancy disappears upon recollection
of the 1 um step size used for this particular scan.
Essentially, the pattern separation method demonstrated
that a single mixed pattern very near the OIM grain
boundary produced a faulty result for the ,, elastic strain
that subsequently misplaced the approximated grain bound-
ary by one micron (note that this particular boundary is
probably at a high angle of inclination from the surface,
accounting for the wide range of partially mixed patterns
and subsequent positional change). To obtain the upper
limits of spatial resolution, a sufficiently small step size
must be used in correlation with the pattern separation
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Fig. 11 GND density for large and small scans demonstrating concentrations near failure points

method. The increased spatial resolution available from
pattern separation could play a vital role in furthering the
study of grain boundary interactions with the deformation
field, by making near interface measurements possible.
Figure 16 is representative of the useful increases in
accuracy pattern separation affords.

Discussion
Increased informational content can be extracted from
EBSD analysis through the appropriate application of

various advanced methodologies. To summarize: Wilkin-
son’s method is ideal for measuring gradient terms and for

False color grain map of 58% of cold worked

micrometers

40
micrometers

50 60

Fig. 12 False color grain map of cold-worked copper

SEM

application in single crystal samples with readily available
strain-free reference patterns. The simulated pattern method
cannot yet equal Wilkinson’s method in terms of angular
resolution, but extends the measurement capabilities into
polycrystalline and highly deformed samples. Pattern center
calibration is vital to insure accuracy in measurements of
elastic strain, lattice curvature, and dislocation density.
Combining the two cross-correlation methods can take
advantage of the strengths of each. And finally, spatial
resolution can be improved by cross-correlations that are
used to separate out non-dominant patterns near interfaces.
It should be noted that the usefulness of each of these
techniques is restricted to materials which allow a fine
polish and produce an EBSD pattern. Materials which are
porous, amorphous, not polishable, etc., will require
different methods.

Each of the above techniques has been successfully
applied to an indented single crystal sample, a polycrystal-
line sample, or both. The advantages of increased resolu-
tion, both spatial and angular, are obvious in light of the
stunning images obtained, which contain a wealth of
information that can shed light on the pertinent micro-
mechanics. The potential for greater understanding of crack
initiation is particularly promising. Further study is neces-
sary to determine the potential resolution of crack detection,
but it seems reasonable to postulate that even micro cracks
within an order of magnitude of the interaction volume
diameter may be detectable. Still, limitations in instrument
capability and the lack of three-dimensional information
leaves ample room for future improvement and innovation.
At present, measurements of elastic strain, rotation, lattice
curvature, and dislocation density are limited to the material
surface and the effect of the traction free condition on each
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Fig. 13 Mapped components of the elastic strain tensor of cold-worked copper

Summed curvature magnitude for metric must be considered. In the study of crack initiation
58% cold worked copper (in degrees/um) (which typically occurs at the surface) this observational
restriction is probably not an issue, but sectioning a sample
to investigate the interior structure introduces a free surface
which may substantially alter any recovered measurements.
Regardless, the lattice configuration within ~100 nm of the
surface may be reliably investigated using the advanced
techniques herein presented.

micrometers

Conclusions

To conclude, the current state of EBSD-based microstruc-
ture analysis has been outlined and examples of the various
methods provided. The current absolute resolution limits
are given by Wilkinson’s method at 0.006° for angular and
10~ for strain components. The simulated pattern augmen-
tation offers resolutions of 0.04° and 7x 10 *, respectively,
Fig. 14 Summed lattice curvature of cold-worked copper while allowing greater versatility in measurements for

100 ol B 9 | L - a8
0 10 20 30 40 50 60 70 80 90 100
micrometers
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Fig. 15 A mixed grain boundary pattern in the center and two reference patterns from the mixed grains on either side of a rolled nickel line scan

polycrystals. Pattern center calibration, accomplished by
parallelizing band edges in a spherical frame, can reduce
pattern center error to a negligible level (i.e. below the
noise level of Wilkinson’s method). Only 6 components of
the lattice curvature tensor are available from a two-
dimensional scan and at most 5 components of Nye’s
dislocation density tensor can be resolved. Individual
dislocation densities generally cannot be recovered, but a
lower bound density can be established. Finally, separating
mixed boundary patterns using cross-correlation facilitates
accurate measurements nearer to interfaces than otherwise
would be possible.
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