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Asymptotic stress and deformation fields under the contact point singularities of a nearly-
flat wedge indenter and of a flat punch are derived for elastic ideally-plastic single crystals
with three effective in-plane slip systems that admit a plane strain deformation state. Face-
centered cubic (FCC), body-centered cubic (BCC), and hexagonal-close packed (HCP) crys-
tals are considered. The asymptotic fields for the flat punch are analogous to those at the
tip of a stationary crack, so a potential solution is that the deformation field consists
entirely of angular constant stress plastic sectors separated by rays of plastic deformation
across which stresses change discontinuously. The asymptotic fields for a nearly-flat wedge
indenter are analogous to those of a quasistatically growing crack tip fields in that stress
discontinuities can not exist across sector boundaries. Hence, the asymptotic fields under
the contact point singularities of a nearly-flat wedge indenter are significantly different
than those under a flat punch. A family of solutions is derived that consists entirely of elas-
tically deforming angular sectors separated by rays of plastic deformation across which the
stress state is continuous. Such a solution can be found for FCC and BCC crystals, but it is
shown that the asymptotic fields for HCP crystals must include at least one angular con-
stant stress plastic sector. The structure of such fields is important because they play a sig-
nificant role in the establishment of the overall fields under a wedge indenter in a single
crystal. Numerical simulations—discussed in detail in a companion paper—of the stress
and deformation fields under the contact point singularity of a wedge indenter for a FCC
crystal possess the salient features of the analytical solution.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The elastic–plastic properties of materials have long been probed using various indentation methods. Mechanics analyses
of the indentation process are employed to interpret the results of indentation experiments in order to extract values of
mechanical properties. The fidelity of these models depends upon how accurately the mechanics models reflect the actual
stress and deformation fields in the material under the indenter.

It has traditionally been challenging to characterize stress and deformation states within an opaque material underneath
an indenter. Recent diffraction-based methods, though, have made it possible to measure the rotation of the crystal lattice
associated with elastic–plastic deformation under an indenter tip, as well as to characterize the state of the elastic (or lattice)
strain. One such method is Laue x-ray diffraction which can resolve lattice orientation and elastic strain with a spatial
resolution of about 1 lm within a volume of crystalline material (Larson et al., 2004; Ohashi et al., 2009). This method is
capable of measuring the three-dimensional fields associated with an indentation (Yang et al., 2004; Feng et al., 2008),
. All rights reserved.
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but with somewhat restricted spatial resolution. Another experimental method is Orientation Imaging Microscopy (OIM)
(Adams, 1997) which employs Electron Backscatter Diffraction (EBSD) within a Scanning Electron Microscope (SEM). Recent
advances have rendered OIM/EBSD capable of measuring crystal lattice strain with an uncertainty of ±10�4 and lattice ori-
entation on a surface with an accuracy of ±0.005� with a spatial resolution of 50 nm (Wilkinson et al., 2006; Kacher et al.,
2009).

The high resolution OIM/EBSD methods have been applied to characterize lattice strains and lattice rotations associated
with nanoindentations in crystalline materials (Britton et al., 2010; Wilkinson and Randman, 2010), but it is not possible to
capture all gradients of deformation with surface measurements alone. Thus, several researchers have developed strategies
to use OIM/EBSD to characterize deformation fields under indentations with serial sectioning using a Focused Ion Beam (FIB)
in a SEM (Kiener et al., 2006; Rester et al., 2007, 2008; Zaafarani et al., 2006, 2008; Demir et al., 2009).

In order to simplify the interpretation of indentation experiments as much as possible while retaining the salient features
of the deformation state, a set of experiments have been performed in which a wedge is used to indent a single metal crystal
(Kysar et al., 2007, 2010). The symmetries of the wedge and the metal crystal are chosen such that a two-dimensional lattice
rotation field is induced in the indented region of the single crystal; the depth of the indentations is such that small-scale
yielding (SSY) conditions are achieved. The lattice rotation field is subsequently measured using OIM/EBSD and the lower
bound on total density of geometrically necessary dislocations is determined from the experimentally measured two-dimen-
sional lattice rotation field (Kysar et al., 2010). Similar methods have been applied to characterize the deformation fields
associated with single crystal crack tip fields (Kysar and Briant, 2002), cylindrical voids (Gan et al., 2005) in single crystals,
and also laser shock peening on metal crystals (Chen et al., 2004).

The goal of this paper is to develop insight into the structure of the experimentally measured lattice rotation fields under-
neath a wedge indenter in a crystal oriented to induce a two-dimensional lattice rotation state. Rice (1987) showed that
three effective in-plane plastic slip systems exist for such a configuration. The wedge indenter in the experiments has an
included angle of 90� so that finite rotations of the crystal lattice are induced during deformation. However in order to render
the associated boundary value problem amenable to analytic solution, we consider in this paper a nearly-flat wedge indenter
with an included angle that approaches 180�. Thus, the analytical solution can be obtained in the context of infinitesimal
deformation gradients so that changes in the crystal lattice orientation induced by the deformation can be ignored. Clearly
there must be significant differences between the deformation state under the 90� wedge and the nearly-flat wedge inden-
ter; however the analytical solution does capture the salient features of the deformation state.

One distinguishing feature of the two-dimensional deformation state is the presence of two contact point singularities that
exist where the indenter loses contact with the underlying material. It will be demonstrated that these contact point singu-
larities can be treated as analogs of crack tip singularities, albeit ones associated with cracks that are closing quasistatically.
We will derive the asymptotic stress and deformation fields associated with these quasistatically propagating singularities
and compare them to the their stationary counterparts that are associated with the contact point singularities at the edges of
a flat punch which impinges into an identical single crystal.

The format of this paper is as follows. Section 2 reviews the basic concepts necessary to formulate and solve for the fields
associated with a quasistatically moving contact point singularity. The asymptotic stress and deformation fields associated
with a contact point singularity in the limit of a nearly-flat wedge that is indented into an elastic–plastic single crystal are
derived in Section 3; we discuss the cases of face-centered cubic (FCC), body-centered cubic (BCC) and hexagonal close-
packed (HCP) single crystals. The associated asymptotic stress and deformation fields for a stationary contact point singu-
larity are reviewed in Section 4. Finally, in Section 5, we discuss the consequences of the solutions. We compare in a
companion paper the results of finite element simulations of the process of wedge indentation into a single crystal with
the analytical results for the case of a nearly-flat wedge indenter; a close correlation exists between the analytical and
numerical results. In addition, the companion paper compares the results of numerical simulations (Kysar et al., 2010) of
90� wedge indentation to the case of nearly-flat wedge indentation in order to identify the effects of finite lattice rotations.
2. Theoretical background

Conventional slip line theory provides a framework for analyzing plastic deformation in rigid, ideally-plastic materials
under plane strain conditions. Slip line theory was originally developed based on the assumption of material isotropy (Hen-
cky, 1923; Pollaczek-Geiringer, 1931) and was later generalized to treat a restricted form of anisotropy (Hill, 1948) of the
plastic response. Later advances generalized the concepts of slip line theory to be valid for a rigid, ideally-plastic material
with an arbitrary anisotropic (Booker and Davis, 1972; Rice, 1973) plastic response.

Rice (1982) and Drugan et al. (1982) generalized the concepts of isotropic slip line theory in the context of asymptotic
crack tip fields for quasistatically growing cracks to treat an elastic, ideally-plastic material. Further, Rice (1987) applied
the concepts to asymptotic crack tip fields in single crystals while assuming anisotropic elastic and plastic behavior. The for-
mulation reviewed in this section is a generalization of standard isotropic slip line theory as applied to asymptotic fields in
two senses: (a) to account for elastically deforming regions assuming isotropic elastic properties; and (b) to account for plas-
tically deforming regions assuming the plastic anisotropy of single crystals.

Inasmuch as the formulation is an extension of slip line theory, it still has the drawback that solutions for boundary value
problems must often be ‘‘guessed’’ and that a solution, once found, may not be unique. Thus the methodology may not be



1642 Y. Saito, J.W. Kysar / International Journal of Plasticity 27 (2011) 1640–1657
able to determine uniquely what stress and deformation fields exist around a singular point, but it is important to note that
the theory is very precise in stating which phenomena are not admissible. In addition, once a solution is found, the velocity
field can be used to predict the structure of the instantaneously active slip systems in order to establish a baseline set of
fields valid for highly ideal constitutive behavior. Experience has shown (Hutchinson, 1968; Rice and Rosengren, 1968; Borg
and Kysar, 2007; Gan and Kysar, 2007) that the introduction of more realistic constitutive models into numerical simulations
allows one to analyze the more realistic stress and deformation fields in the context of the idealized fields.

2.1. Contact point and crack tip analogy

Prandtl (1920, 1921, 1923) proposed an analogy between a flat punch (cf. Fig. 1a) and a stationary crack tip (cf. Fig. 1b).
Assuming a rigid indenter and a rigid ideally-plastic material in the limit of no friction, the flat punch and the stationary
Mode I crack tip are analogous problems because each has the same traction boundary conditions around the contact point
singularities. For a flat punch, the stress components r12 and r22 are zero on the material free surface and r12 is zero under
the flat punch whereas for a stationary Mode I crack tip, r12 and r22 are zero on the crack flanks and r12 is zero on the pro-
longation of the crack. (N.B. The coordinate frames in Fig. 1 are chosen such that their origins are at the contact point sin-
gularities.) Therefore, the asymptotic deformation fields relative to the contact point singularities in both problems are
expected to show analogous behaviors. Likewise, there exists an analogy between a wedge indentation (cf. Fig. 1c) and a
quasistatically closing crack (cf. Fig. 1d). Here the traction boundary conditions for the wedge indentation require that the
normal and shear stresses be zero on the free surface and the shear stress be zero under the wedge indenter to the extent
that friction can be neglected. For the quasistatically closing Mode I crack, r12 and r22 are also zero on the crack flanks and
r12 is zero on the line ahead of the crack tip.

The stress and deformation fields near the singular points exhibit an asymptotic behavior as r ? 0, where the variable r is
the distance from the singular point. Within the region where the asymptotic fields dominates the material response, the
stress and deformation fields are predominantly a function only of angular position. Thus we speak of angular sectors exist-
ing around the singular point that are either plastic sectors or elastic sectors (i.e. the material instantaneously within the
angular sector is either deforming plastically or elastically, respectively).

The boundaries between angular sectors are rays that emanate from the singular point. Strictly speaking since we are con-
sidering plane strain configurations, the rays are cross-sections of two-dimensional surfaces that form the boundaries be-
tween sectors. For the case of a punch or a stationary crack, these two-dimensional surfaces do not translate through the
material. However for the case of a wedge indenter or for a quasistatically moving crack tip, these two-dimensional surfaces
translate through the material. There are fundamental differences between the allowable jumps on the stress, strain and
velocity fields across a two-dimensional surface within an elastic–plastic material based upon whether the surface is station-
ary or moving quasistatically, as will be discussed in Section 2.2. These differences, in turn, lead to distinctly different forms
of asymptotic stress and deformation states admitted by stationary contact point singularities as opposed to quasistatically
moving contact point singularities.
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Fig. 1. Distinctions and similarities between flat punch indentation, wedge indentation and cracks. (a) Flat punch indentation. (b) Stationary crack. (c)
Wedge indentation. (d) Quasistatically closing crack.
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2.2. Restrictions on moving surfaces of strong discontinuity in elastic–plastic solids

Drugan and Rice (1984) analyzed restrictions on quasistatically propagating surfaces within a general class of elastic–
plastic materials that includes elastic ideally-plastic single crystals. The restrictions are: (a) all components of the stress ten-
sor must be continuous across the surface; and (b) only the material velocity components parallel to the moving surface, and
their associated plastic shear strain components, may experience jumps, but only if all of the following conditions are met
sR
tt ¼ sR

nn ¼ sR
t3 ¼ 0 ð1aÞ

½vd� ¼ �2c½K�rR
nd ð1bÞ

½ep
nd� ¼ ½K�rR

nd ð1cÞ
where s = r � I trace(r)/3 is the deviatoric stress tensor with r the stress tensor and I the second-rank identity tensor. A
superscript R indicates that the continuous stress component is to be evaluated on the surface; subscripts n and t refer
to normal (in the propagation direction) and tangential (in the x1, x2 plane) directions to the moving surface, respectively
and c is the velocity of the moving surface in the normal direction. A subscript d refers to t and 3 while the [�] symbol denotes
the jump in a quantity across the surface; (value ahead minus value behind); and [K] is a non-positive value. The main
consequence of these restrictions for elastic–plastic metals in the context of asymptotic fields associated with contact point
singularities is that the stress state can change discontinuously across a sector boundary for a stationary contact point sin-
gularity but the stress state across the sector boundaries must be continuous for a quasistatically moving contact point
singularity.

2.3. Single crystal plasticity and effective in-plane slip systems

We consider plastic deformation that occurs by the creation and motion of dislocations within a single crystal on discrete
slip systems defined by crystallographic planes (with unit normal n(j)) on which dislocations exist and the directions (de-
noted by unit vector s(j)) in which plastic slip occurs for the jth slip system. A single crystal undergoing plastic deformation
exhibits anisotropic plastic behavior. Assuming Schmid’s Law holds for the crystal, a slip system is activated when the shear
stress resolved onto the slip plane in the direction of slip reaches a critical value. This is expressed as
sðjÞa rabnðjÞb ¼ �sðjÞ ð2Þ
where rab is the applied Cauchy stress tensor and s(j) is the experimentally determined critical resolved shear stress of the
jth slip system. (Herein, Latin indices i, j, k, l have range 1, 2, and Greek indices a, b, c, d have range 1, 2, 3. Both types of
indices follow the summation convention, but no summation is performed for any index in parentheses.)

Generally, there exist several slip systems depending on the crystal type. For example, a FCC crystal has 12 slip systems
with slip planes {111} and slip directions h110i, where {111} corresponds to the family of slip planes n, and h110i corre-
sponds to the family of slip directions s. A BCC crystal has 48 slip systems with 12 slip systems for slip planes {110} with
slip directions h111i, 12 slip systems for slip planes {112} with slip directions h111i, and 24 slip systems for slip planes
{123} with slip directions h111i. An HCP crystal has 12 slip systems with 3 slip systems for slip planes {0001} with slip direc-
tions h1120i, 3 slip systems for slip planes {1010} with slip directions h1120i and 6 slip systems for slip planes {1011} with
slip directions h1120i.

Rice (1987) showed that if a line loading is applied parallel to a h110i direction in a FCC or BCC crystal, plane deformation
conditions are achieved on the corresponding {110} plane with three effective in-plane slip systems; further details are
found elsewhere (Crone et al., 2004; Kysar et al., 2005, 2010). There also exist configurations of HCP crystals that admit a
plane deformation state with three in-plane slip systems. These effective in-plane slip systems in all three crystal classes will
be referred to as slip system (i), (ii), and (iii) following the nomenclature adopted by Kysar et al. (2005, 2010).

In a FCC crystal, it can be readily shown that both the ð1�11Þ½�101� and ð1�11Þ½011� crystallographic slip systems experience
the same resolved shear stress if a line loading is applied parallel to a h110i direction on a surface that is perpendicular to the
(110) plane. Assuming both slip systems have the same experimentally determined critical resolved shear stress, each will be
activated in equal amounts. Because the two slip systems are coplanar, dislocations from both slip systems combine to form
an effective dislocation on the ð1�11Þ plane in the ½�112� direction. Since ½�112� lies within the (110) plane, activation of the
effective slip system induces a plane strain deformation state. In what follows, this effective slip system will be called slip
system (i); it is oriented at an in-plane angle of /ð1Þ ¼ tan�1ð

ffiffiffi
2
p
Þ � 54:7� counterclockwise relative to the x1-axis (parallel to

the ½�110� direction), as shown in Fig. 2a. Similarly, under application of a line load in the [110] direction on a surface that is
perpendicular to the (110) plane, the ð111Þ½�110� and ð�1�11Þ½�110� crystallographic slip systems experience the same resolved
shear stress. Because the Burgers vectors of both slip systems are collinear, they form an effective slip system which leads to
plane strain deformation in the (110) plane with effective (001) slip plane and effective ½�110� slip direction. This effective
ð001Þ½�110� system is referred to slip system (ii) and is oriented such that /(2) = 0� relative to the x1-axis, as shown in
Fig. 2a. Finally, the ð1�1�1Þ½101� and ð1�1�1Þ½0�11� crystallographic slip systems experience the same resolved shear stress due
the application of a line load in the [110] direction on a surface that is perpendicular to the (110) plane. Since the two slip
systems are coplanar, the two types of dislocations combine to form an effective slip system on the ð1�1�1Þ plane in the ½1�12�
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Fig. 2. Effective in-plane slip systems relative to chosen crystallographic orientation for: (a) FCC; (b) BCC; and (c) HCP; as well as the corresponding yield
surface for: (d) FCC; (e) BCC; and (f) HCP.
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that is denoted as slip system (iii). The effective ð1�1�1Þ½1�12� slip system admits plane strain deformation in the (110) plane, is
oriented at an in-plane angle of /ð3Þ ¼ tan�1ð�

ffiffiffi
2
p
Þ � 125:3� relative to the x1-axis, as shown in Fig. 2a. The remaining slip

systems cannot be combined in any way to achieve sustained in-plane plastic deformation if plane strain conditions are
enforced.

A line loading applied parallel to [110] on a plane perpendicular to the (110) direction in a BCC crystal also activates three
effective in-plane slip systems. In this case, the slip system ð�112Þ½1�11� operates in the plane of deformation and is referred to
as in-plane slip system (i); it is oriented at the angle of /ð1Þ ¼ tan�1ð

ffiffiffi
2
p
Þ � 54:7� counterclockwise relative to the x1-axis (par-

allel to the [001] direction), as shown in Fig. 2b. The combination of slip systems ð1�10Þ½111� and ð1�10Þ½�1�11� forms the effec-
tive in-plane slip system ð1�10Þ½001� denoted as slip system (ii) that is oriented at /(2) = 0� relative to the x1-axis, as shown in
Fig. 2b. Finally, ð1�12Þ½1�1�1� forms in-plane slip system (iii) that is oriented at /ð3Þ ¼ tan�1ð�

ffiffiffi
2
p
Þ � 125:3� relative to the x1-

axis, as shown in Fig. 2b. It is interesting to note that the unit effective slip direction and slip plane normal vectors—denoted
as S(j) and N(j), respectively—are the same for both the BCC and FCC cases (Rice, 1987) for all three effective slip systems
when the BCC crystal is rotated 90� about the [110] axis relative to the FCC crystal (Rice, 1987).

For the case of HCP, if a line loading is applied along the [0001] on a surface that is perpendicular to (0001), in-plane slip
conditions are achieved in the ½12�10� and ½�1010� plane as shown in Fig. 2(c). In this case the ½2�1�10�ð01�10Þ system which is
oriented at /ð1Þ ¼ tan�1ð

ffiffiffi
3
p
Þ ¼ 60� with respect to the x1-axis (parallel to the ½12�10� direction) is designated to be slip system

(i). Likewise, slip system (ii) consists of ½12�10�ð10�10Þ and is oriented at /(2) = 0� with respect to the x1-axis. Finally, the
½�1�120�ð1�100Þ slip system is designated to be slip system (iii) which is oriented at /ð3Þ ¼ tan�1ð�

ffiffiffi
3
p
Þ ¼ �60� with respect

to the x1-axis. Each of these three slip systems admits plane deformation (Gan and Kysar, 2007).
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We now discuss how to derive the plastic yield surface for the effective in-plane deformation state in the three crystal
classes. Rice (1987) showed that Schmid’s law from Eq. (2)—when applied to a plane deformation state (e.g. r13 = r23 = 0)
in an elastically anisotropic material and using the conditions that nðjÞa sðjÞa ¼ 0 and that either sðjÞ3 or nðjÞ3 is zero for the crys-
tallographic slip systems delineated above—reduces to
sðjÞ1 nðjÞ1 þ sðjÞ2 nðjÞ1

� �
r12 þ 2sðjÞ1 nðjÞ1

ðr11 � r22Þ
2

¼ �sðjÞ ð3Þ
where n(j) is the slip normal and s(j) is the slip direction of the crystallographic slip systems that combine to form the effec-
tive in-plane slip systems. If n(j) and s(j) are projected onto the x1, x2 plane of the crystal and rescaled as unit vectors N(j) and
S(j), respectively, Eq. (3) can be rewritten as
SðjÞ1 NðjÞ1 þ SðjÞ2 NðjÞ1

� �
r12 þ 2SðjÞ1 NðjÞ1

ðr11 � r22Þ
2

¼ �bðjÞsðjÞ ð4Þ
where b(j) is a constant specific to the j-th slip system such that Eqs. (3) and (4) are equivalent expressions. Rice (1987)
noted that bð1Þ ¼ bð3Þ ¼ 2=

ffiffiffi
3
p

and bð2Þ ¼
ffiffiffi
3
p

for a FCC crystal, and b(1) = b(3) = 1 and bð2Þ ¼
ffiffiffi
3
p

for a BCC crystal. Furthermore,
b(1) = b(2) = b(3) = 1 for a HCP crystal. The appropriate choice of the sign of b(j) depends upon whether the slip system is acti-
vated in a positive or a negative sense. Kysar et al. (2005) expressed Eq. (8) by using the relations, SðjÞ1 ¼ cos /ðjÞ,
SðjÞ2 ¼ sin /ðjÞ;NðjÞ1 ¼ �SðjÞ2 and NðjÞ2 ¼ SðjÞ1 to obtain
r12 ¼ tan 2/ðjÞ
ðr11 � r22Þ

2
� kðjÞsðjÞ

cos 2/ðjÞ
ð5Þ
where /(j) is the angle of the effective slip direction relative to the x1-axis. If the crystal under consideration is fully annealed,
one can assume that s(j) is the same for each slip system, so that s(j) = s. Then, because the only stress quantities that appear
in Eq. (5) are (r11 � r22)/2 and r12, it is natural to plot the yield condition in a two-dimensional stress space with abscissa
(r11 � r22)/2s and ordinate r12/s as shown in Fig. 2 for the three crystal classes considered. Plastic slip can occur in both a
positive and a negative sense on a given slip system, so Eq. (5) represents a pair of parallel lines in stress space. The three
effective in-plane slip systems give rise to three pairs of parallel lines; the yield surface is defined as the inner envelope of the
three pairs of lines. The values for b(1), b(2) and b(3) for each of the three crystal classes are in Table 1. The positions of the
vertices of the yield surface are tabulated in Tables 2–4 for the FCC, BCC and HCP crystals, respectively.

2.4. Asymptotic elastic angular sectors

Both elastic sectors as well as plastic sectors are admissible around a singular point in an elastic, ideally-plastic single
crystal. Rice (1982) derived the most general form for the stresses in asymptotic angular elastic sectors around a quasistat-
ically propagating crack tip based upon the assumption of isotropic elastic properties as follows
4ð1� m2Þ
E

r11 ¼ 4A1 ln j sin hj þ A1 cos 2hþ A2ð2hþ sin 2hÞ þ C11 ð6aÞ

4ð1� m2Þ
E

r12 ¼ A1ð2hþ sin 2hÞ � A2 cos 2hþ C12 ð6bÞ

4ð1� m2Þ
E

r22 ¼ �A1 cos 2hþ A2ð2h� sin 2hÞ þ C22 ð6cÞ

r33 ¼ mðr11 þ r22Þ þ d ð6dÞ
where h is the angle from the line ahead of the moving singular point. As expected for an asymptotic solution, the stresses are
independent of radius. The elastic properties are the Young’s modulus, E, and Poisson’s ratio, m. The unknown constants A1,
A2, C11, C12, C22 and d must be determined from boundary conditions. In order to have an elastic sector that borders h = 0� or
h = ±180�, A1 is necessarily zero otherwise the quantity (r11 � r22)/2 would become unbounded, which would induce plastic
deformation.

The asymptotic velocity components (Rice, 1982; Drugan et al., 1982; Miao and Drugan, 1995) expressed in polar
components are
Table 1
Generic slip angle a and values of b(1), b(2) and b(3) for FCC, BCC, and HCP crystals.

Crystal a b(1) b(2) b(3)

FCC �54.7� 2ffiffi
3
p

ffiffiffi
3
p

2ffiffi
3
p

BCC �54.7� 1
ffiffiffi
3
p

1

HCP �60.0� 1 1 1



Table 2
Vertices of FCC yield surface.

Vertex (r11 � r22)/2s r12/s

A
ffiffi
6
p

4

ffiffiffi
3
p

B �
ffiffi
6
p

4

ffiffiffi
3
p

C �
ffiffi
6
p

2
0

D �
ffiffi
6
p

4 �
ffiffiffi
3
p

E
ffiffi
6
p

4 �
ffiffiffi
3
p

F
ffiffi
6
p

2
0

Table 3
Vertices of BCC yield surface.

Vertex (r11 � r22)/2s r12/s

A 3
ffiffi
2
p
�
ffiffi
6
p

4

ffiffiffi
3
p

B � 3
ffiffi
2
p
�
ffiffi
6
p

4

ffiffiffi
3
p

C � 3
ffiffi
2
p

4
0

D � 3
ffiffi
2
p
�
ffiffi
6
p

4 �
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Vertices of HCP yield surface.
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v r ¼ � _a A2 sin hþ A1 cos h½ � ln Rep

r

� �
� ð1� 2mÞ

2ð1� mÞ A1sinh� A2cosh½ �h
� �

ð7aÞ

vh ¼ � _a A2 cos h� A1 sin h½ � ln Re�p

r

� �
� ð1� 2mÞ

2ð1� mÞ A1coshþ A2sinh½ �h
� �

ð7bÞ
where _a is the speed of the contact point singularity relative to the material, r is the radius from the contact point singularity,
R is an undetermined constant length, and p = 1/(4(1 � m)).
2.5. Asymptotic plastic angular sectors

The different types of plastic sectors in isotropic, rigid ideally-plastic slip line theory are reviewed by Lubliner (1990). The
a and b characteristics in slip line theory correspond to directions of plastic slip, so in the context of single crystal plasticity
the a and b lines must be parallel to S and N, respectively (Rice, 1973; Kysar et al., 2005). As a consequence, the fan-type of
plastic sector is not admissible in single crystal plasticity because it has a and b lines that are not straight. Thus any plastic
angular sector in a single crystal must be of the constant stress type for which the a and b lines are straight. Within a con-
stant stress sector, the values of r11, r12, and r22 are constants. The stress state of a constant stress angular sector coincides
with a vertex of the yield surface or of the intersection of the yield surface with the abscissa, which indicates that, in general,
two or potentially one effective slip systems may be active. (N.B. The intersection of the yield surface with the abscissa of
stress space can be considered to be a vertex of the yield surface in the context of such asymptotic fields.)
2.6. Stationary and quasistatically growing crack tips in single crystals

Rice (1987) derived the asymptotic stress and displacement fields for a material with a plane strain Mode I crack in an
elastic ideally-plastic single crystal with three effective in-plane slip systems in the limit r ? 0, where r is the radius from



Y. Saito, J.W. Kysar / International Journal of Plasticity 27 (2011) 1640–1657 1647
the crack tip. He showed that elastic and constant stress plastic asymptotic angular sectors can exist in such single crystals
and that the stress state remains bounded. Elastically deforming sectors have a stress trajectory in stress space that lies in-
side the yield surface (by stress trajectory, we refer to the path traced out in stress space that corresponds to the stress state
along a physical path traversed throughout the deforming material).

There are two types of boundaries between the sectors, both of which are rays that emanate from the singular point. A
boundary between two elastic sectors or between an elastic and a plastic sector has a trajectory in stress space that touches
the yield surface tangentially so plastic deformation occurs at the sector boundary but there is no stress discontinuity across
it. The other type of sector boundary separates two plastically deforming sectors; its stress state traverses the yield surface
from one vertex to another vertex so there exists a discontinuity of stress across the sector boundary. Both types of sector
boundaries activate only one effective slip system.

Sector boundaries for which plastic deformation occurs must be parallel to either S(j) or N(j). Adopting the terminology by
Rice (1987), if the ray lies parallel to S(j), it is referred to as a glide shear sector boundary because effective dislocations glide
along the ray. If, however, the ray lies parallel to N(j), it is referred to as a kink shear sector boundary because dislocations
with Burgers vector direction S(j) form walls of dislocations that induce a measurable change in the orientation of the crystal
lattice. Both types of sector boundaries have been observed experimentally (Shield and Kim, 1994; Crone and Shield, 2001;
Kysar and Briant, 2002; Flouriot et al., 2003; Crone and Shield, 2003; Crone et al., 2004; Gan et al., 2005; Patil et al., 2009).

Angular sectors around a stationary singular point may have either plastically deforming or elastically deforming neigh-
boring sectors and, hence, either type of sector boundary can occur. However since quasistatically moving two-dimensional
surfaces do not admit a stress discontinuity across them, a quasistatically moving singular contact point can not have two
plastic angular sectors adjacent to one other because the associated sector boundary would necessarily have a stress discon-
tinuity. Thus a quasistatically moving singular point must have an elastic sector that separates plastic sectors or a ray of plas-
tic deformation that separates two elastic sectors.

Rice (1987) derived stress and deformation fields for a stationary Mode I crack tip. The angular sector structure shown in
Fig. 3a is the same for both FCC and BCC crystals. The stationary crack solution has four angular constant stress plastic sectors
separated by either glide or kink shear sector boundaries across which the stress changes discontinuously. Other asymptotic
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Fig. 3. Angular sectors around Mode I crack tip in FCC and BCC crystals according to Rice (1987). Angular sectors are indicated in lower half-plane below the
crack only: (a) Stationary crack; and (b) Quasistatically growing crack.
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fields can be constructed (Saeedvafa and Rice, 1989; Zhang and Huang, 1994; Mesarovic and Kysar, 1996; Kysar, 2001a,b),
including fields that do not contain kink shear sector boundaries (Drugan, 2001).

Rice (1987) also derived stress and deformation fields for a quasistatically propagating Mode I crack in the same material
systems. The deformation fields shown in Fig. 3b consist of two plastic sectors, two elastic sectors as well as a sector bound-
ary between the two elastic sectors on which plastic deformation occurs. As required, there are no stress discontinuities
across the sector boundaries; however the solution does admit discontinuities of radial velocity across the sector boundaries.

2.7. Wedge indentation into isotropic rigid ideally-plastic materials

In order to gain insight and motivation into possible forms of the asymptotic deformation and stress fields in single crys-
tals during wedge indentation, we consider the case of wedge indentation into a rigid, ideally-plastic isotropic material, as
illustrated in Fig. 4. This solution was originally reported by Hill et al. (1947) and is also discussed in Johnson (1985). The
regions are angular sectors denoted by A, B and C that each meet at one of the singular points. As the wedge indenter moves
downward into the material and the contact point singularities move away from the center, the stress state in the angular
sectors A and C is at yield but the sectors do not undergo plastic deformation; thus angular sector A and C translate without
distortion. Angular sector B is a centered-fan sector that deforms plastically. Velocity discontinuities exist at the sector
boundaries.
3. Wedge indentation solutions

The concepts reviewed in the previous section will be applied to derive asymptotic deformation fields under a contact
point singularity associated with wedge indentation in a single crystal in the limit for which the included angle of the inden-
ter approaches 180�. In this way, we are able to uncover the salient features of the stress and deformation fields without
having to account for rotation of the crystal lattice in the solution.

The cases of FCC, BCC and HCP will be considered. The geometry is illustrated in Fig. 5a where due to symmetry only the
right half of the domain under the wedge indenter is shown. The orientation of the crystal relative to the coordinate frame
for the three crystal classes is shown in Fig. 2. The contact point singularity is at point O, so the wedge indenter is in contact
with the surface of the crystal on line OU (i.e. from the center of the wedge indenter to the contact point singularity). The
contact point singularity moves quasistatically to the right as the wedge is pushed deeper into the material. The x1, x2 coor-
dinate frame indicated in Fig. 5 propagates with the contact point singularity. The wedge indenter has not yet come into
contact with the surface of the crystal on line OP.

3.1. Boundary conditions and constraints

Zero traction boundary conditions hold on the surface indicated by line OP in Fig. 5 so that r12 = r22 = 0. Further, friction
between the material and the indenter is assumed to be negligible so that r12 = 0 on line OU. According to Drugan and Rice
(1984), all stress components must be continuous across a quasistatically propagating surface in elastic–plastic materials.
Thus, relative to a coordinate frame centered at the contact point singularity and translating with it, this constraint requires
that rij(h + e) = rij(h � e) in the domain �180� < h < 0� as e ? 0; here i and j have values 1 or 2 consistent with plane strain
conditions and h is the angular position of a material point in the asymptotic fields relative to the translating coordinate
frame. In addition, there can be no discontinuities of velocity in the circumferential direction, although discontinuities in
the radial component of the velocity are admissible. Finally, the stress state must either lie within the yield surface or on
the yield surface.
Rigid wedge indenter

Rigid ideally-plastic isotropic material

AA
C

BB
C

Contact point
singularities

Fig. 4. Angular sectors around singular points predicted by slip line theory for rigid, ideally-plastic materials according to Hill et al. (1947).
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3.2. Postulated sector structure

The deformation field for wedge indentation into an isotropic rigid ideally-plastic material, described in Section 2.7, con-
tains three angular sectors around both contact point singularities. The two angular sectors (denoted as A and C in Fig. 4)
adjacent to the exterior surface of the material have stress states at yield, yet they do not deform plastically; these regions
translate rigidly through the material. A third sector intermediate (denoted as B in Fig. 4) between sectors A and C is a cen-
tered-fan type of plastic field. In the context of elastic, ideally-plastic constitutive relations for the single crystals discussed
herein, the two rigidly translating angular sectors are taken to be analogous to elastically deforming sectors because no plas-
tic deformation is activated. In addition, the centered-fan sector structure from the isotropic case can not exist in a single
crystal. In the context of single crystal plasticity, such a sector could be treated as being analogous to an elastic sector or
it could be treated as a constant stress plastic sector.

We derive analytical asymptotic solutions for the stress and deformation fields under a contact point singularity for a
nearly-flat wedge indenter by assuming that there exist only elastic sectors that are separated by rays of plastic slip. We con-
sider two cases. The first case, shown in Fig. 5a, has four elastic angular sectors separated by concentrated glide shear sector
boundaries on slip systems (i) and (iii) as well as a kink type sector boundary on slip system (ii). The second case, shown in
Fig. 5b consists of three elastic sectors separated by glide shear sector boundaries on slip systems (i) and (iii) without having
a kink shear deformation due to the slip system (ii).

We will show for the specific crystal classes and crystallographic orientations considered that asymptotic fields from the
first case are possible only for FCC crystals and that asymptotic fields from the second case are possible only for BCC crystals.
We also show that neither of the asymptotic fields is admissible for HCP so there must exist at least one plastically deforming
sector around the contact point singularity point.
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The postulated form of the sector structure is fundamentally different than that of a quasistatically growing crack (Rice,
1987). For a growing crack, the contact point singularity propagates into material that is to be sundered, so one expects an
angular sector of plastically deforming material adjacent to the prolongation of the crack at h = 0� in Fig. 3. Further, the grow-
ing crack solution must have another plastic sector adjacent to the crack flanks at h = ±180� in order to preclude the un-
bounded stresses of an elastic sector for A1 – 0 in the logarithmic term in Eq. (6a).

The contact point singularity of a wedge indentation is associated with the closing of a crack-like feature, so there is not
necessarily an expectation that a plastically deforming sector must exist at h = 0� in Fig. 5 because the contact point singu-
larity is moving toward material which has not been previously deformed plastically. In order to maintain a bounded stress
state in an elastic sector for h = 0�, it is necessary to set A1 = 0 in Eq. (6a), upon which an elastic sector at h = �180� in Fig. 5
also is possible.

Therefore, we set A1 = 0 and A2 – 0 whereupon Eq. (6) can be rewritten
4ð1� m2Þ
E

r11 ¼ A2ð2hþ sin 2hÞ þ C11 ð8aÞ

4ð1� m2Þ
E

r12 ¼ �A2 cos 2hþ C12 ð8bÞ

4ð1� m2Þ
E

r22 ¼ A2ð2h� sin 2hÞ þ C22 ð8cÞ

r33 ¼ mðr11 þ r22Þ þ d ð8dÞ
Upon changing notation to A2 = C2, C12 = C3, C11 = C1 + C4, C12 = C1 � C4 in Eq. (8), these can be further rearranged to obtain the
form derived by Drugan (2001) as
r11 � r22

2s
¼ C2 sin 2hþ C4 ð9aÞ

r11 þ r22

2s
¼ C1 þ 2C2h ð9bÞ

r12

s
¼ �C2 cos 2hþ C3 ð9cÞ
Because A1 = 0, these equations are identical to the most general stress state for a stationary elastic sector (Drugan, 2001).
Further, for A1 = 0, Eq. (7) reduces to
v r ¼ � _aC2 sin h ln
Rep

r

� �
þ ð1� 2mÞ

2ð1� mÞ hcosh
	 


ð10aÞ

vh ¼ � _aC2 cos h ln
Re�p

r

� �
� ð1� 2mÞ

2ð1� mÞ hsinh

	 

ð10bÞ
3.3. Analytical procedure

In order to derive a general solution that holds for FCC, BCC and HCP crystals, we define a as the angle between the x1-axis
and slip system (iii) in Fig. 5. For both FCC and BCC crystals a = �54.7� and a = �60� for HCP crystals. We then assume that
each of the angular sectors is elastic and the sectors are separated by rays of plastic deformation. One solution is obtained for
the case in which a kink-shear band is assumed to be present and another solution is obtained for the case in when the kink-
shear band is assumed to not be present.

3.3.1. General solution with kink shear sector boundary
The most general form of solution for the asymptotic fields case with kink-shear band as shown in Fig. 5a, is now derived.

For sector I in Fig. 5a, the traction free boundary condition on the material free surface implies that r12 = r22 = 0 on line OP
which corresponds to angular position h = 0. The value of (r11 � r22)/2s is limited to the range between points C and F on the
yield surfaces in Fig. 2 (cf. Tables 2–4) if the material within sector I is to deform elastically. Therefore, we define
C � r11ðh ¼ 0Þ
2s

ð11Þ
and treat it as a free parameter with a range to be determined by the analysis. In that way the stress state at h = 0� is known
to within a free parameter.

We now consider the stress state at h = h1 (i.e. on the line OQ) in Fig. 5a, where slip system (iii) is activated. We assume
that a ray of plastic deformation occurs at this angle as a boundary between elastic sector I and elastic sector II. Thus, the
stress state in the elastic sector must tangentially touch line CB on the yield surfaces in Fig. 2 that corresponds to slip system
(iii). This can be ensured by substituting the stress expressions from Eq. (9) into Schmid’s law in the form of Eq. (5) and solv-
ing for the unknown constants using the boundary conditions at h = h1. The stresses in sector I can now be determined from
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the stress states at h = 0 and h = h1. The four unknown constants in Eq. (9) are determined in sector I to within the undeter-
mined parameter
CI
1 ¼ C ð12aÞ

CI
2 ¼

C sinð2aÞ � b1

cosð2aÞ � 1
ð12bÞ

CI
3 ¼

C sinð2aÞ � b1

cosð2aÞ � 1
ð12cÞ

CI
4 ¼ C ð12dÞ
where the superscripts I through IV indicate the sector. The angle, a, of slip system (iii) relative to OP is in Table 1 for the
various crystal classes considered.

The next task is to obtain expressions for CII
1, CII

2 ;C
II
3 , and CII

4 in sector II. The stress state on line OQ is known so we require
the stress state on the other boundary of sector II. If slip system (ii) is activated on the line OR for the case with a kink shear
sector boundary (cf. Fig. 5a), then the stress state on line OR is determined from Schmid’s law (cf. Eq. (5)) at h = h2. This results
in
CII
1 ¼ C� 4

aC
sinð2aÞ þ

4ab1 þ 2ab2 cosð2aÞ � 2ab2

sin2ð2aÞ
ð13aÞ

CII
2 ¼

C sinð2aÞ � b1 þ b2

1þ cosð2aÞ ð13bÞ

CII
3 ¼

b2 cosð2aÞ � C sinð2aÞ þ b1

1þ cosð2aÞ ð13cÞ

CII
4 ¼ Cþ b2 � 2b1 � b2 cosð2aÞ

sinð2aÞ ð13dÞ
The other boundary of sector III is at h = h3 where slip system (i) is activated (cf. Fig. 5a). The values of C1, C2, C3, and C4 are
then determined.
CIII
1 ¼ Cþ 2pb2 þ

2p cosð2aÞ � 4aC� 2pC
sinð2aÞ � 4pb1 � 4pb2 � 2ab2ð Þ cosð2aÞ

sin2ð2aÞ
� 4pðb2 � b1Þ þ 2aðb2 � 2b1Þ

sin2ð2aÞ
ð14aÞ

CIII
2 ¼ �

�2b2 cosð2aÞ � 3b1 þ C sinð2aÞ þ b2

1þ cosð2aÞ ð14bÞ

CIII
3 ¼
�b2 cosðaÞ � 3b1 þ C sinðaÞ þ 2b2

1þ cosðaÞ ð14cÞ

CIII
4 ¼ �Cþ b2 � 2b1 � b2 cosðaÞ

sinðaÞ : ð14dÞ
In order to obtain the stresses in sector IV, the boundary condition for the stresses along line OU is that r12 = 0 because we
assume negligible friction between the indenter and the material.
CIV
1 ¼ Cþ 2pb2 þ

2p cos 2að ÞCþ 2pC� 2pb2

sin 2að Þ � 4pb1 þ 4ab2ð Þ cosð2aÞ
sin2ð2aÞ

þ �8pb1 þ 4aðb2 � 2b1Þ
sin2ð2aÞ

ð15aÞ

CIV
2 ¼

2b2 cosð2aÞ � C sinð2aÞ � 2b2 þ 3b1

cosð2aÞ � 1
ð15bÞ

CIV
3 ¼

2b2 cosð2aÞ � C sinð2aÞ � 2b2 þ 3b1

cosð2aÞ � 1
ð15cÞ

CIV
4 ¼ Cþ 2b2 � 2b1 � 2b2 cosð2aÞ

sinð2aÞ : ð15dÞ
Thus, we have obtained the stresses in each sector as a function of the free parameter C. The range of C is determined by
the constraints that the stress trajectory must remain inside the yield surface, and that the stress trajectory must touch the
yield surface tangentially for each ray of plastic deformation. After imposing the stress constraints on C, the possible ranges
for C are determined for each case as follows
FCC Case : �
ffiffiffi
6
p

4
< C <

ffiffiffi
6
p

4
ð16aÞ

BCC Case : �9
ffiffiffi
2
p
� 5

ffiffiffi
6
p

4
< C <

3
ffiffiffi
6
p
� 3

ffiffiffi
2
p

4
ð16bÞ

HCP Case : �2
ffiffiffi
3
p

3
< C < 0 ð16cÞ
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When C is at the limit or beyond its range, the stress trajectory encounters a vertex of the yield surface which implies that
a plastic sector must exist adjacent to the elastic sector. For example, in the case of FCC crystals, when C ¼ �

ffiffiffi
6
p

=4, the stress
trajectory for sector I begins at r12/s = 0 and ðr11 � r22Þ=2s ¼ �

ffiffiffi
6
p

=4 and ends at the top left vertex of the yield surface. This
implies that sector II would be a constant stress plastic sector in which both slip system (ii) and (iii) are activated. This is
clearly a possible physical outcome, but we will not consider it further herein because it violates our assumption of solely
elastic sectors.

Up to this point we have accounted only for the stress state. We now consider the velocity fields as well and note that no
discontinuity in the circumferential component of velocity, vh, is allowed in Eq. (10b), which for the case of A1 = 0 implies that
CI

2 ¼ CII
2 ¼ CIII

2 ¼ CIV
2 if there are only elastic sectors. This constraint forces the range of the free parameter C either to have

precisely one value or to be non-existent. When C exists, the assumption of an asymptotic field consisting only of elastic
sectors separated by rays of plastic slip is an admissible solution. Of course, such an asymptotic field is not necessarily
the only possible solution, nor is it necessarily the correct physical solution. On the other hand, when no solution for C exists,
the assumed form for the asymptotic fields is not admissible so there must be one or more plastically deforming angular
sectors around the contact point singularity.

For the FCC case, the only possible solution is when C = 0. For BCC and HCP crystals with a kink shear sector boundary, it is
impossible to find a value C that satisfies both the range constraint and velocity constraint simultaneously. Therefore, no
solution of this type can be constructed for BCC and HCP single crystals. From Eq. (18), the solution for a FCC crystal simpli-
fies to
CI
1 ¼ CII

1 ¼ CIII
1 ¼ CIV

1 ¼ 0 ð17aÞ

CI
2 ¼ CII

2 ¼ CIII
2 ¼ CIV

2 ¼
ffiffiffi
3
p

2
ð17bÞ

CI
3 ¼ CII

3 ¼ CIII
3 ¼ CIV

3 ¼
ffiffiffi
3
p

2
ð17cÞ

CI
4 ¼ CII

4 ¼ CIII
4 ¼ CIV

4 ¼ 0 ð17dÞ
Because C1, C2, C3, and C4 have the same values in each sector for FCC, the stress state over the entire domain can be
expressed as
r11 � r22

2s
¼

ffiffiffi
3
p

2
sin 2h ð18aÞ

r11 þ r22

2s
¼

ffiffiffi
3
p

h ð18bÞ

r12

s
¼

ffiffiffi
3
p

2
ð1� cos 2hÞ ð18cÞ
The result is plotted in Fig. 6. The stress trajectory forms a circle in stress space starting from the origin and touching three
segments of the yield surface tangentially in a clockwise fashion as h decreases in Fig. 5a, activating each of the slip systems
in turn before finishing back at the origin as shown in Fig. 6a. The individual stress components are plotted as a function of
angle in Fig. 6b.
3.3.2. General solution without kink shear sector boundary
The general solution without a kink shear sector boundary based on the configuration Fig. 5b is derived. The meth-

odology is the same as the previous subsection except that no kink shear band due to the slip system (ii) emanates from
the singular point. The four unknown constants in Eq. (9) are determined in sector I to within the undetermined param-
eter C
CI
1 ¼ C ð19aÞ

CI
2 ¼

C sinð2aÞ � b1

cosð2aÞ � 1
ð19bÞ

CI
3 ¼

C sinð2aÞ � b1

cosð2aÞ � 1
ð19cÞ

CI
4 ¼ C ð19dÞ
where the superscripts I through IV indicate the sector. The general solution is for sector II is
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Fig. 6. Stress solution to the FCC crystal for quasistatically moving case which admits a kink shear sector boundary.
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CII
1 ¼ C� 2aC

sinð2aÞ ð20aÞ

CII
2 ¼

C cosð2aÞ sinð2aÞ � cosð2aÞb1 � b1

cos2ð2aÞ � 1
ð20bÞ

CII
3 ¼
� cosð2aÞb1 þ C sinð2aÞ � b1

cos2ð2aÞ � 1
ð20cÞ

CII
4 ¼ 0 ð20dÞ
The general solution for sector III is
CIII
1 ¼ 1� 4aþ 2p

sinð2aÞ

� �
C ð21aÞ

CIII
2 ¼

C sinð2aÞ � b1

cosð2aÞ � 1
ð21bÞ

CIII
3 ¼

C sinð2aÞ � b1

cosð2aÞ � 1
ð21cÞ

CIII
4 ¼ �C ð21dÞ
The values for a and b1, b2 and b3 are in Table 1. In order for the stress trajectory to be inside the yield surface and touch the
line segment of the yield surface tangentially, the value C must be within the ranges
FCC Case : �
ffiffiffi
6
p

2
< C < 0 ð22aÞ

BCC Case : �3
ffiffiffi
2
p

4
< C <

ffiffiffi
6
p
� 3

ffiffiffi
2
p

2
ð22bÞ

HCP Case : �2
ffiffiffi
3
p

3
< C < �

ffiffiffi
3
p

3
ð22cÞ
We now apply the restriction of no discontinuity in the circumferential component of velocity, which for the case of A1 = 0
implies that CI

2 ¼ CII
2 ¼ CIII

2 ¼ CIV
2 . The only crystal class that admits a possible solution is BCC for which C = 0. The solution

then reduces to
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CI
1 ¼ CII

1 ¼ CIII
1 ¼ CIV

1 ¼ 0 ð23aÞ

CI
2 ¼ CII

2 ¼ CIII
2 ¼ CIV

2 ¼
3
4

ð23bÞ

CI
3 ¼ CII

3 ¼ CIII
3 ¼ CIV

3 ¼
3
4

ð23cÞ

CI
4 ¼ CII

4 ¼ CIII
4 ¼ CIV

4 ¼ 0 ð23dÞ
Again, because they have identical constants in each sector, the stress states can be expressed in the following equations.
r11 � r22

2s
¼ 3

4
sin 2h ð24aÞ

r11 þ r22

2s
¼ 3

2
h ð24bÞ

r12

s
¼ 3

4
ð1� cos 2hÞ ð24cÞ
The result is plotted in Fig. 7. The stress trajectory begins at the origin of the stress space and forms a circle in a clockwise
sense as h decreases in Fig. 5b touching the line segments tangentially that correspond to the slip system (iii) and (i) and
returns to the origin without meeting the yield condition for slip system (ii). Note that because the BCC yield surface is nar-
rower than that of FCC, (see the coordinates of the FCC and BCC yield surfaces in Tables 2 and 3), the stress trajectory does
not touch the top line segment of the yield surface; therefore no kink band is formed with slip system (ii).
4. Flat punch solutions

The stress and deformation fields near contact point singularities in a general anisotropic rigid ideally-plastic material
under the influence of a flat punch were derived by Booker and Davis (1972) and Rice (1973). In particular, Rice (1973,
1987) demonstrated that one possible solution for the asymptotic fields in a single crystal consists solely of constant stress
angular sectors of plastic deformation. For the specific crystal classes and orientations considered herein, such an asymptotic
deformation state under the contact point singularity of a flat punch is shown in Fig. 8. Each plastic sector corresponds to a
vertex of the yield surface so that, in general, two slip systems are activated. The sector boundaries correspond to sides of the
yield surface so only one slip system is activated in either glide or kink shear, depending upon whether the sector boundary
is parallel or perpendicular, respectively, to the slip system under consideration.
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Fig. 7. Stress solution to the BCC crystal for quasistatically moving case which does not admit a kink shear sector boundary.
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For the boundary conditions delineated in Section 2.1 and in Fig. 1a, sector I is a plastic sector in which slip systems (i) and
(iii) are activated which corresponds to point C on the yield surfaces of Fig. 2. The sector boundary OQ constitutes a stress
discontinuity for which slip system (iii) is in glide shear and corresponds to the side CB in the yield surface. Sector II is a
plastic sector in which slip systems (ii) and (iii) are activated and corresponds to point B on the yield surfaces. The sector
boundary OR constitutes a stress discontinuity for which slip system (ii) is in kink shear and corresponds to the side BA
in the yield surfaces. Sector III is a plastic sector in which slip systems (i) and (ii) are activated and corresponds to point
A on the yield surfaces. The sector boundary OT constitutes a stress discontinuity for which slip system (i) is in glide shear
and corresponds to the side AF in the yield surfaces. Finally, Sector IV is a plastic sector in which slip systems (i) and (iii) are
activated which corresponds to point F on the yield surfaces.

Within each plastic sector, the stress state expressed in Cartesian coordinates is constant. Given the analogy between a
flat punch and a stationary crack, the stress distributions as a function of angle around the contact point singularity are the
same (except for the sign) as the stresses around a crack tip. Rice (1987) tabulates the stresses for the FCC and the BCC cases.
Other possible solutions which include elastic sectors but no kink shear sector boundaries are presented in Drugan (2001).
5. Conclusion and discussion

Asymptotic solutions for the deformation fields of elastic ideally-plastic single crystals near the contact point singularities
of an indenter are derived under plane strain conditions for a general single crystal that has three effective in-plane slip sys-
tems for which one slip plane is horizontal and the other two slip planes are oriented at symmetric angles with respect to the
first. The elastic properties of the crystal are treated as being isotropic so the results should apply well to materials such as
tungsten and aluminum, which have anisotropy ratios (Hirth and Lothe, 1982) close to unity, but perhaps less well for other
materials. Solutions are derived for both a flat punch and a nearly-flat wedge indenter.

The asymptotic deformation and stress fields for the flat punch are analogous to those of a stationary crack in a single
crystal. Following Rice (1987), the deformation fields consist of constant stress angular sectors undergoing plastic deforma-
tion. The boundaries between the sectors are rays of plastic deformation that are induced either by glide shear or kink shear.
Stresses are discontinuous across the sector boundaries. Solutions of this type exist for FCC, BCC, and HCP crystals.

The asymptotic deformation and stress fields under a nearly-flat wedge indenter are qualitatively different than those of
the flat punch case because of restrictions on discontinuities of stress that may occur across a propagating surface in an elas-
tic–plastic material. For FCC and BCC crystals, the deformation fields consist entirely of angular sectors undergoing elastic
deformation. The boundaries between the sectors are rays of plastic deformation that are induced either by glide shear or
kink shear. Stresses are continuous across the sector boundaries. Further the solutions for the FCC, BCC and HCP crystals have
significant differences. For the FCC case, the sector boundaries for the nearly-flat wedge indenter are the same as for the flat
punch whereas for the BCC case a kink shear sector boundary is predicted to not exist under the wedge indenter while it is
predicted to exist under the flat punch. However, these solutions assume rate independent plastic deformation. For the BCC
wedge indenter case, the stress trajectory shown in Fig. 7a approaches, but does not touch, the side of the yield surface that
would activate the kink shear sector boundary. If a rate dependent plastic deformation formulation were to be employed, as
in a numerical simulation, the kink shear sector boundary may be activated because of the proximity of the stress trajectory
to the yield surface. Finally, for HCP case, the analysis demonstrates that at least one constant stress plastic sector must exist
in the asymptotic fields of the contact point singularity.
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Thus, the asymptotic deformation fields at the contact point singularities of a flat punch and a nearly-flat wedge indenter
are significantly different. The only feature of the deformation fields that persists as the deformation state transitions from
that of a flat punch to a wedge indenter are the rays of plastic deformation on which glide or kink shear occur. The differ-
ences in deformation state under the contact point singularities are expected to result in significantly different deformation
and stress fields in the entire domain beneath a flat punch and a nearly-flat wedge indenter.

Finally, numerical simulations—discussed in detail in a companion paper—of the stress and deformation fields under the
contact point singularity of a wedge indenter for a FCC crystal exhibit the same asymptotic deformation and stress fields as
derived herein. In addition the numerical results demonstrate that the analytical solution for a nearly-flat wedge indenter
captures the salient characteristic of the deformation and stress fields under a wedge indenter with a 90� included angle that
induces finite rotation. Knowledge of such fields assists with the interpretation of experimental results in which the lattice
rotation and the associated Geometrically Necessary Dislocation (GND) content are measured in a FCC crystal that has suf-
fered wedge indentation (Kysar et al., 2010).
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